cRIO-9046

	_		_	_		1	_
C	0	n	τ	е	n	τ	S

cRIO-9046 Si	pecifications	 	 	3
0 0 00 . 0 0	,	 	 	

cRIO-9046 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- Typical specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Conditions

Specifications are valid for -40 °C to 70 °C unless otherwise noted.

Processor

CPU	Intel Atom E3930
Number of cores	2
CPU frequency	1.3 GHz (base), 1.8 GHz (burst)
On-die L2 cache	2 MB

Software

Note For minimum software support information, visit $\underline{\text{ni.com/info}}$ and enter the Info Code swsupport.

Supported operating system	NI Linux Real-Time (64-bit)
Supported C Series module programming modes	Real-Time (NI-DAQmx)
	Real-Time Scan (I/O Variables)
	LabVIEW FPGA
Application software	
LabVIEW[1]	LabVIEW 2017 or later, LabVIEW Real-Time Module 2017 or later, LabVIEW FPGA Module 2017 or later,
C/C++ Development Tools for NI Linux Real-Time[2]	Eclipse Edition 2014 or later
Driver software	NI CompactRIO Device Drivers December 2017 or later

Network/Ethernet Port

Number of ports	2
Network interface	10Base-T, 100Base-TX, and 1000Base-T Ethernet
Compatibility	IEEE 802.3
Communication rates	10 Mb/s, 100 Mb/s, 1000 Mb/s auto-negotiated

Maximum cabling distance	100 m/segment

Network Timing and Synchronization

Protocol	IEEE 802.1AS-2011
	IEEE 1588-2008 (default end-to-end profile)
Supported ethernet ports	Port 0, port 1
Network synchronization accuracy[3]	<1 μs

Note The cRIO-9046 employs time-aware transmission support. For more information about time-aware transmission support, visit <u>ni.com/info</u> and enter Info Code timeaware.

RS-232 Serial Port

Maximum baud rate	115,200 b/s
Data bits	5, 6, 7, 8
Stop bits	1, 2
Parity	Odd, even, mark, space
Flow control	RTS/CTS, XON/XOFF, DTR/DSR
RI wake maximum low level	0.8 V
RI wake minimum high level	2.4 V

RI overvoltage tolerance	±24 V

RS-485 Serial Port

Maximum baud rate	230,400 b/s
Data bits	5, 6, 7, 8
Stop bits	1, 2
Parity	Odd, even, mark, space
Flow control	XON/XOFF
Wire mode	4-wire, 2-wire, 2-wire auto
Isolation voltage	60 V DC continuous, port to earth ground

Note The RS-485 serial port ground and shield are functionally isolated from chassis ground to prevent ground loops, but do not meet IEC 61010-1 for safety isolation.

Cable requirement	Unshielded, 30 m maximum length (limited by EMC/surge)

 ${f Note}$ RS-485 is capable of 1.2 km (4,000 ft) length without surge limitation.

USB Ports

Port 1: ←

Amplicon

Type USB Type-A, host port

USB interface USB 2.0, Hi-Speed

Maximum data rate 480 Mb/s

Maximum current 900 mA

Port 2: *SS*← **P**

Type USB Type-C, host port

USB interface USB 3.1 Gen1, SuperSpeed

Maximum data rate 5 Gb/s

Maximum current 900 mA

Alternate modes DisplayPort

Port 3: SS←

Type USB Type-C, dual role port (device or host)

USB interface USB 3.1 Gen1, SuperSpeed

Maximum data rate 5 Gb/s

Maximum current 900 mA

DisplayPort over USB Type-C

Maximum resolution 3840 × 2160 at 60 Hz

Supported standard	DisplayPort 1.2
Supported USB ports	Port 2: <i>ss</i> ← ₪

SD Card Slot

SD card support	SD and SDHC standards
Supported interface speeds	UHS-I SDR50 and DDR50

Notice Full and high speed SD cards are prohibited for use with the cRIO-9046.

Memory

Nonvolatile memory (SSD)	4 GB
Nonvolatile memory (SSD) type	Planar SLC NAND

Note Visit <u>ni.com/info</u> and enter the Info Code ssdbp for information about the life span of the nonvolatile memory and about best practices for using nonvolatile memory.

Volatile memory (DRAM)	
Density	2 GB
Туре	DDR3L
Maximum theoretical data rate	12.8 GB/s

Reconfigurable FPGA

FPGA type	Xilinx Kintex-7 7K70T
Number of flip-flops	82,000
Number of 6-input LUTs	41,000
Number of DSP slices (18 × 25 multipliers)	240
Available block RAM	4,860 kbits
Number of DMA channels	16
Number of logical interrupts	32

Internal Real-Time Clock

Accuracy	200 ppm; 40 ppm at 25 °C

Controller PFI 0

Maximum input or output frequency	1 MHz
Cable length	3 m (10 ft)
Cable impedance	50 Ω
PFI 0 connector	SMB
Power-on state	High impedance

Amplicon

I/O standard compatibility	5 V TTL
I/O voltage protection	±30 V
Maximum operating conditions	
I _{OL} output low current	8 mA maximum
I _{OH} output high current	-8 mA maximum

Voltage	Minimum	Maximum
Positive going threshold	1.43 V	2.28 V
Negative going threshold	0.86 V	1.53 V

 $0.48 \, V$

0.87 V

Table 1. DC Input Characteristics

Hysteresis

Voltage	Conditions	Minimum	Maximum
High	_	_	5.25 V
	Sourcing 100 μA	4.65 V	_
	Sourcing 2 mA	3.60 V	_
Sourcing 3.5 mA	Sourcing 3.5 mA	3.44 V	_
Low	Sinking 100 μA	_	0.10 V
	Sinking 2 mA	_	0.64 V
	Sinking 3.5 mA	_	0.80 V

Table 2. DC Output Characteristics

Real-Time Streaming Performance

Data throughput is dependent on the application, system, and performance of the removable storage media. For information about optimizing data throughput on the cRIO-9046 visit <u>ni.com/info</u> and enter Info Code optdata.

Data throughput from system memory to target

SD card	40 MB/s	
USB Type-C	100 MB/s	

Real-Time (NI-DAQmx) Mode

The following specifications are applicable for modules and slots programmed in Real-Time (NI-DAQmx) mode. For more information about using modules in LabVIEW FPGA mode or Real-Time Scan (I/O Variables) mode, visit <u>ni.com/info</u> and enter Info Code swsupport.

Analog Input

Input FIFO size	253 samples per slot
Maximum sample rate ^[4]	Determined by the C Series module or modules
Timing accuracy ^[5]	50 ppm of sample rate
Timing resolution	12.5 ns
Number of channels supported	Determined by the C Series module or modules
Number of hardware-timed tasks	8

Analog Output

Hardware-timed tasks	
Number of hardware-timed tasks	8
Number of channels supported	

Onboard regeneration 16		
Non-regeneration	Determine	ed by the C Series module or modules
Non-hardware-timed tasks		
Number of non-hardware-timed tasks		Determined by the C Series module or modules
Number of channels supported		Determined by the C Series module or modules

Maximum upd	late rate	1.6 MS/s

Note Streaming applications are limited by system-dependent factors and the capability of C Series modules.

Timing accuracy	50 ppm of sample rate
Timing resolution	12.5 ns
Waveform onboard regeneration FIFO	8,191 samples shared among channels used
Waveform streaming FIFO	253 samples per slot

Digital Waveform

waveform acquisition (DI) FIFO	
Parallel modules	255 samples per slot

Serial modules 127 samples per slot

Waveform onboard regeneration (DO) FIFO

Parallel modules

Slots 1 to 4 2,047 samples shared among slots used

Slots 5 to 8 1,023 samples shared among slots used

Waveform streaming (DO) FIFO

Parallel modules 255 samples per slot

Serial modules 127 samples per slot

Sample clock frequency

Digital input 0 MHz to 10 MHz

Digital output

ot0:6 timing engine 0 MHz to 3.5 MHz

ot7 timing engine 0 MHz to 10 MHz

Note Streaming applications are limited by system-dependent factors and the capability of C Series modules.

Timing accuracy	50 ppm
Number of digital input hardware-timed tasks	8
Number of digital output hardware-timed tasks	8

General-Purpose Counters/Timers

Number of counters/timers	4	
Resolution	32 bits	
Counter measurements	Edge counting, pulse, semi-period, period, two-edge separation, pulse width	
Position measurements	X1, X2, X4 quadrature encoding with Channel Z reloading; two- pulse encoding	
Output applications	Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling	
Internal base clocks	80 MHz, 20 MHz, 13.1072 MHz, 12.8 MHz, 10 MHz, 100 kHz	
External base clock frequency	0 MHz to 20 MHz	
Base clock accuracy	50 ppm	
Output frequency	0 MHz to 20 MHz	
Inputs	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down	
Routing options for inputs	Any module PFI, controller PFI, analog trigger, many internal signals	
FIFO	Dedicated 127-sample FIFO	

Frequency Generator

Number of channels	1	
Base clocks	20 MHz, 10 MHz, 100 kHz	
Divisors	1 to 16 (integers)	
Base clock accuracy	50 ppm	
Output	Any controller PFI or module PFI terminal	

Module PFI

Functionality	Static digital input, static digital output, timing input, and timing output
Timing output sources[6]	Many analog input, analog output, counter, digital input, and digital output timing signals
Timing input frequency	0 MHz to 20 MHz
Timing output frequency	0 MHz to 20 MHz

Digital Triggers

Source	Any controller PFI or module PFI terminal
Polarity	Software-selectable for most signals

Analog input function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Analog output function	Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Counter/timer function	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down

Module I/O States

At power-on	Module-dependent. Refer to the documentation for each C Series module.	

Time-Based Triggers and Timestamps

Note Time-based triggers and timestamps are only supported in NI-DAQmx 18.1 or later.

Number of time-based triggers		5	
Number of timestamps		6	
Analog input			
Time-based triggers	Start Trigger, Sync Pulse		
Timestamps	tamps Start Trigger, Reference Trigger, First S		
Analog output			
Time-based triggers	Start Trigger, Sync Pulse		
Timestamps	Start Trigger, First Sample		

Digital input

Time-based triggers Start Trigger

Timestamps Start Trigger, Reference Trigger, First Sample

Digital output

Time-based triggers Start Trigger

Timestamps Start Trigger, First Sample

Counter/timer input

Time-based triggers Arm Start Trigger

Timestamps Arm Start Trigger

Counter/timer output

Time-based triggers Start Trigger, Arm Start Trigger

Timestamps Start Trigger, Arm Start Trigger

CMOS Battery

	Typical battery life with power applied to power connector	10 years
-	Typical battery life when stored at temperatures up to 25 °C	7.8 years
ŀ	Typical battery life when stored at temperatures up to 85 °C	5.4 years

Power Requirements

Note Some C Series modules have additional power requirements. For more information about C Series module power requirements, refer to the C Series module(s) documentation.

Note Sleep mode for C Series modules is not supported in Real-Time (DAQmx) Mode.

Voltage input range (measured at the cRIO-9046 power connector)			
V1	9 V to 30 V		
V2	9 V to 30 V		
Maximum power consump	tion	60 W	

Note The C terminal of the power connector is functionally isolated from chassis ground to prevent ground loops, but does not meet IEC 61010-1 for safety isolation

Note The maximum power consumption specification is based on a fully populated system running a high-stress application at elevated ambient temperature and with all C Series modules and USB devices consuming the maximum allowed power.

Typical standby power consumption	3.4 W at 24 V DC input
Recommended power supply	100 W, 24 V DC

Typical leakage current from secondary power input (V2) while system is powered from primary power input (V1)

on for industry

Amplicon

At 9 V	0.4 mA	
At 30 V	1.93 mA	

- Notice Do not connect V2 to a DC Mains supply or to any supply that requires a connecting cable longer than 3 m (10 ft). A DC Mains supply is a local DC electricity supply network in the infrastructure of a site or building. V1 may be connected to DC Mains.
- Notice Include a switch or circuit breaker in the installation to disconnect the system from DC Mains. The switch or circuit breaker must be suitably rated, accessible, and marked as the disconnecting device for the system.

EMC ratings for inputs as described in IEC 61000 V1 Short lines, long lines, and DC distributed networks V2 Short lines only Power input connector 4-position, 3.5 mm pitch, pluggable screw terminal with screw locks, Sauro CTF04BV8-AN000A

Physical Characteristics

Weight (unloaded)	2,250 g (4 lbs, 15 oz)
Dimensions (unloaded)	328.8 mm × 88.1 mm × 121.2 mm (12.94 in. × 3.47 in. × 4.77 in.)
Power connector wiring Gauge	0.5 mm ² to 2.1 mm ² (20 AWG to 14 AWG) copper conductor wire

Wire strip length 6 mm (0.24 in.) of insulation stripped from the end

Temperature rating 85 °C

Torque for screw terminals 0.20 N·m to 0.25 N·m (1.8 lb·in. to 2.2 lb·in.)

Wires per screw terminal One wire per screw terminal

Connector securement

Securement type Screw flanges provided

Torque for screw flanges 0.20 N·m to 0.25 N·m (1.8 lb·in. to 2.2 lb·in.)

Insulation rating 300 V, maximum

Safety Voltages

Connect only voltages that are below these limits.

V1 terminal to C terminal	30 V, maximum
V2 terminal to C terminal	30 V, maximum
Chassis ground to C terminal	30 V, maximum

Environmental

Temperature (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2)

Operating -40 °C to 70 °C

Storage -40 °C to 85 °C

Ingress protection	IP20
Operating humidity (Tested in accordance with IEC 60068-2-30)	10% RH to 90% RH, noncondensing
Storage humidity (Tested in accordance with IEC 60068-2-30)	5% RH to 95% RH, noncondensing
Pollution Degree	2
Maximum altitude	5,000 m

Indoor use only.

Hazardous Locations

U.S. (UL)	Class I, Division 2, Groups A, B, C, D, T4; Class I, Zone 2, AEx nA IIC T4 Gc
Canada (C-UL)	Class I, Division 2, Groups A, B, C, D, T4; Ex nA IIC T4 Gc
Europe (ATEX) and International (IECEx)	Ex nA IIC T4 Gc

Shock and Vibration

To meet these specifications, you must mount the cRIO-9046 system directly on a flat, rigid surface as described in the user manual, affix ferrules to the ends of the terminal wires, and use retention accessories for the USB 2.0 host port (NI USB Extender Cable, 152166-xx), USB type-C ports (NI Locking USB Cables, 143556-xx; NI USB Extender Cable, 143555-xx; NI USB Display Adapters, 143557-xx or 143558-xx). All cabling should be strain-relieved near input connectors. Take care to not directionally bias cable connectors within input connectors when applying strain relief.

Operating vibration	
Random (IEC 60068-2-64)	5 g _{rms} , 10 Hz to 500 Hz
Sinusoidal (IEC 60068-2-6)	5 g, 10 Hz to 500 Hz
Operating shock (IEC 60068-2-27)	30 g, 11 ms half sine; 50 g, 3 ms half sine; 18 shocks at 6 orientations

Safety Compliance and Hazardous Locations Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1
- EN 60079-0:2012, EN 60079-15:2010
- IEC 60079-0: Ed 6, IEC 60079-15; Ed 4
- UL 60079-0; Ed 6, UL 60079-15; Ed 4
- CSA C22.2 No. 60079-0, CSA C22.2 No. 60079-15

Note For UL and other safety certifications, refer to the product label or the Product Certifications and Declarations section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Industrial immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions

ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Notice For EMC declarations and certifications, and additional information, refer to the <u>Product Certifications and Declarations</u> section.

CE Compliance 🤇 🗧

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 2014/34/EU; Potentially Explosive Atmospheres (ATEX)
- 2011/65/EU; Restriction of Hazardous Substances (RoHS)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/certification</u>, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Minimize Our Environmental Impact** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit <u>ni.com/environment/weee</u>.

Battery Replacement and Disposal

Battery Directive This device contains a long-life coin cell battery. If you need to replace it, use the Return Material Authorization (RMA) process or contact an authorized National Instruments service representative. For more information about compliance with the EU Battery Directive 2006/66/EC about Batteries and Accumulators and Waste Batteries and Accumulators, visit ni.com/environment/batterydirective.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信

息,请登录 ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Worldwide Support and Services

The NI website is your complete resource for technical support. At <u>ni.com/support</u>, you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

Visit ni.com/services for information about the services NI offers.

Visit <u>ni.com/register</u> to register your NI product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

NI corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. NI also has offices located around the world. For support in the United States, create your service request at ni.com/support or dial 1 866 ASK MYNI (275 6964). For support outside the United States, visit the **Worldwide Offices** section of ni.com/niglobal to access the branch office websites, which provide up-to-date contact information.

- ¹ LabVIEW FPGA Module is not required when using Real-Time Scan (I/O Variables) mode or Real-Time (NI-DAQmx) mode. To program the user-accessible FPGA on the cRIO-9046, the LabVIEW FPGA Module is required.
- ² C/C++ Development Tools for NI Linux Real-Time is an optional interface for C/C++ programming of the cRIO-9046 processor. Visit <u>ni.com/info</u> and enter Info Code RIOCdev for more information about the C/C++ Development Tools for NI Linux Real-Time.
- ³ Network synchronization is system-dependent. For information about network synchronization accuracy, visit <u>ni.com/info</u> and enter Info Code criosync.
- ⁴ Performance dependent on type of installed C Series module and number of channels in the task.

- $\frac{5}{2}$ Does not include group delay. For more information, refer to the documentation for each C Series module.
- ⁶ Actual available signals are dependent on type of installed C Series module.

