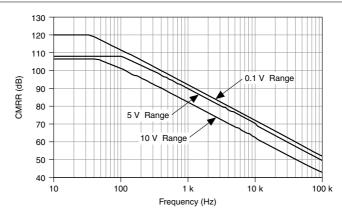
DEVICE SPECIFICATIONS

NI 6345

X Series Data Acquisition: 80 AI, 500 kS/s,16-Bit Resolution, ± 10 V, 24 DIO, 2 AO

Français	Deutsch	日本語	한국어	简体中文
		ni.com/manual	Ls	

The following specifications are typical at 25 °C, unless otherwise noted. For more information about the NI 6345, refer to the *X Series User Manual* available at *ni.com/manuals*.

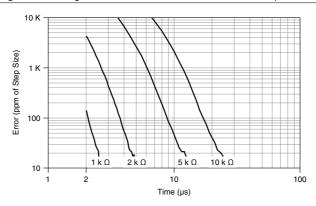

Analog Input

Number of channels	40 differential or 80 single-ended
ADC resolution	16 bits
DNL	No missing codes guaranteed
INL	Refer to the AI Absolute Accuracy section.
Sample rate	
Single channel maximum	500 kS/s
Multichannel maximum	500 kS/s
Minimum	No minimum
Timing resolution	10 ns
Timing accuracy	50 ppm of sample rate
Input coupling	DC
Input range	±0.1 V, ±0.2 V, ±0.5 V, ±1 V, ±2 V, ±5 V, ±10 V
Maximum working voltage for analog inputs (signal + common mode)	±11 V of AI GND
CMRR (DC to 60 Hz)	100 dB

Input impedance

Figure 1. CMRR

mpat impedance	
Device on	
AI+ to AI GND	$>$ 10 G Ω in parallel with 100 pF
AI- to AI GND	$>$ 10 G Ω in parallel with 100 pF
Device off	
AI+ to AI GND	820 Ω
AI- to AI GND	820 Ω
Input bias current	±100 pA
Crosstalk (at 100 kHz)	
Adjacent channels	-75 dB
Non-adjacent channels	-88 dB
Small signal bandwidth (-3 dB)	1.7 MHz
Input FIFO size	4,095 samples
Scan list memory	4,095 entries
Data transfers	DMA (scatter-gather), programmed I/O
Overvoltage protection for all analog input a	nd sense channels
Device on	±25 V for up to two AI pins
Device off	±15 V for up to two AI pins
Input current during overvoltage condition	±20 mA max/AI pin


Amplicon.com

IT and Instrumentation for industry

Settling Time for Multichannel Measurements

Range	±60 ppm of Step (±4 LSB for Full-Scale Step)	±15 ppm of Step (±1 LSB for Full-Scale Step)
± 10 V, ±5 V, ±2 V, ±1 V	2 μs	2 μs
±0.5 V	2 μs	2 μs
±0.2 V, ±0.1 V	2 μs	8 μs

Figure 2. Settling Time versus Time for Different Source Impedances

Al Absolute Accuracy

Table 1. Al Absolute Accuracy

Nominal Range Positive Full Scale	Nominal Range Negative Full Scale	Residual Gain Error (ppm of Reading)	Residual Offset Error (ppm of Range)	Offset Tempco (ppm of Range/°C)	Random Noise, σ (μVrms)	Absolute Accuracy at Full Scale ¹ (μV)
10	-10	48	13	21	281	1520
5	-5	55	13	21	137	800
2	-2	55	13	24	56	320

¹ Refer to the AI Absolute Accuracy Example section.

Nominal Nominal Residual Residual Offset Absolute Random Range Range Gain Error Offset Tempco Accuracy at Noise, σ **Positive** Negative Full Scale¹ (ppm of Error (ppm (ppm of (µVrms) **Full Scale Full Scale** Reading) of Range) Range/°C) (µV) 1 -1 65 17 27 35 180 0.5 95 -0.568 17 34 26 0.2-0.295 2.7 55 2.1 50 0.1 -0.1108 45 90 16 32.

Table 1. Al Absolute Accuracy (Continued)

Gain tempco	13 ppm/°C
Reference tempco	1 ppm/°C
INL error	46 ppm of range

Note Accuracies listed are valid for up to two years from the device external calibration.

Al Absolute Accuracy Equation

AbsoluteAccuracy = Reading \cdot (GainError) + Range \cdot (OffsetError) + NoiseUncertainty

 $GainError = ResidualGainError + GainTempco \cdot (TempChangeFromLastInternalCal) + ReferenceTempco \cdot (TempChangeFromLastExternalCal)$

 $OffsetError = ResidualOffsetError + OffsetTempco \cdot (TempChangeFromLastInternalCal) \\ + INLError$

NoiseUncertainty = $\frac{\text{Random Noise} \cdot 3}{\sqrt{10,000}}$ for a coverage factor of 3 σ and averaging 10,000 points.

Al Absolute Accuracy Example

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C
- number_of_readings = 10,000
- CoverageFactor = 3σ

For example, on the 10 V range, the absolute accuracy at full scale is as follows:

GainError = 48 ppm + 13 ppm
$$\cdot$$
 1 + 1 ppm \cdot 10 = 71 ppm

¹ Refer to the AI Absolute Accuracy Example section.

OffsetError = $13 \text{ ppm} + 21 \text{ ppm} \cdot 1 + 46 \text{ ppm} = 80 \text{ ppm}$

NoiseUncertainity =
$$\frac{281 \ \mu V \cdot 3}{\sqrt{10,000}}$$
 = 8.4 μV

AbsoluteAccuracy = 10 V \cdot (GainError) + 10 V \cdot (OffsetError) + NoiseUncertainity = 1, 520 μ V

Analog Triggers

Number of triggers	1
Source	AI <079>
Functions	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Convert Clock, Sample Clock Timebase
Source level	
AI <079>	±Full scale
APFI 0	±10 V
Resolution	16 bits
Modes	Analog edge triggering, analog edge triggering with hysteresis, and analog window triggering
Bandwidth (-3 dB)	
AI <079>	3.4 MHz
APFI 0	3.9 MHz
Accuracy	±1% of range
APFI 0 characteristics	
Input impedance	10 kΩ
Coupling	DC
Protection, power on	±30 V
Protection, power off	±15 V

Analog Output

Number of channels	2
DAC resolution	16 bits

Sales: +44 (0) 1273 570 220 Website: www.amplicon.com Email: sales@amplicon.com

DNL	±1 LSB
Monotonicty	16-bit guaranteed
Maximum update rate	
1 channel	2.86 MS/s
2 channels	2.00 MS/s
Timing accuracy	50 ppm of sample rate
Timing resolution	10 ns
Output range	$\pm 10~V, \pm 5~V, \pm external~reference~on~APFI~0$
Output coupling	DC
Output impedance	0.2 Ω
Output current drive	±5 mA
Overdrive protection	±25 V
Overdrive current	26 mA
Power-on state	±5 mV
Power-on/off glitch	1.5 V peak for 200 ms
Output FIFO size	8,191 samples shared among channels used
Data transfers	DMA (scatter-gather), programmed I/O
AO waveform modes	Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update
Settling time, full-scale step, 15 ppm (1 LSB)	2 μs
Slew rate	20 V/μs
Glitch energy at midscale transition, $\pm 10~V$ range	10 nV · s

External Reference

APFI 0 characteristics		
Input impedance	$10~\mathrm{k}\Omega$	
Coupling	DC	
Protection, device on	± 30 V	
Protection, device off	± 15 V	
Range	± 11 V	
Slew rate	$20 \text{ V/}\mu\text{s}$	

Amplicon.com

IT and Instrumentation for industry

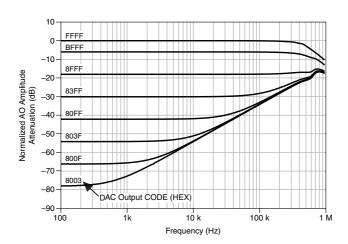


Figure 3. AO External Reference Bandwidth

AO Absolute Accuracy

Absolute accuracy at full-scale numbers is valid immediately following self calibration and assumes the device is operating within 10 °C of the last external calibration.

Table 2. AO Absolute Accuracy

Nominal Range Positive Full Scale	Nominal Range Negative Full Scale	Residual Gain Error (ppm of Reading)	Gain Tempco (ppm/°C)	Absolute Accuracy at Full Scale (µV)
10	-10	63	17	1890
5	-5	70	8	935

Reference tempco (ppm/°C)	1
Residual offset error (ppm of range)	33
Offset tempco (ppm of range/°C)	2
INL Error (ppm of range)	64

Note Accuracies listed are valid for up to two years from the device external calibration.

AO Absolute Accuracy Equation

 $AbsoluteAccuracy = OutputValue \cdot (GainError) + Range \cdot (OffsetError)$

 $\label{eq:GainError} GainError + GainTempco \cdot (TempChangeFromLastInternalCal) + ReferenceTempco \cdot (TempChangeFromLastExternalCal)$

 $OffsetError = ResidualOffsetError + OffsetTempco \cdot (TempChangeFromLastInternalCal) \\ + INLError$

Digital I/O/PFI

Static Characteristics

Number of channels	24 total, 8 (P0.<07>), 16 (PFI <07>/P1, PFI <815>/P2)
Ground reference	D GND
Direction control	Each terminal individually programmable as input or output
Pull-down resistor	50 kΩ typical, 20 kΩ minimum
Input voltage protection	±20 V on up to two pins

Caution Stresses beyond those listed under the *Input voltage protection* specification may cause permanent damage to the device.

Input FIFO size	255 samples
Output FIFO size	2,047 samples
Resolution	32 bits

Waveform Characteristics (Port 0 Only)

Terminals used	Port 0 (P0.<07>)
Port/sample size	Up to 8 bits
Waveform generation (DO) FIFO	2,047 samples
Waveform acquisition (DI) FIFO	255 samples
DI Sample Clock frequency	0 to 10 MHz, system and bus activity dependent
DO Sample Clock frequency	0 to 10 MHz, system and bus activity dependent
Data transfers	DMA (scatter-gather), programmed I/O
Digital line filter settings	160 ns, 10.24 μs, 5.12 ms, disable

PFI/Port 1/Port 2 Functionality

Functionality	Static digital input, static digital output, timing input, timing output
Timing output sources	Many AI, AO, counter, DI, DO timing signals
Debounce filter settings	90 ns, 5.12 μs, 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input

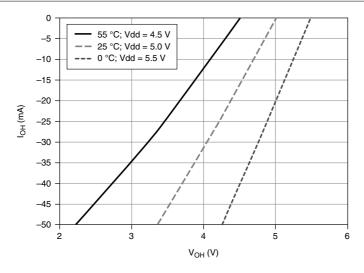
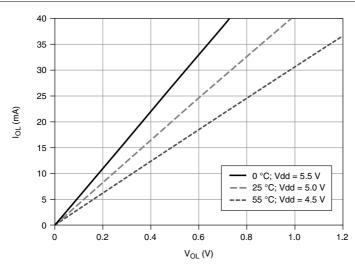
Recommended Operation Conditions

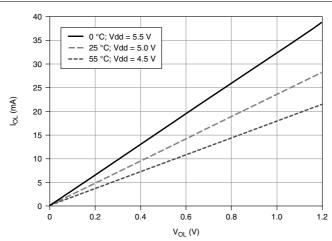
Input high voltage (V _{IH})		
Minimum	2.2 V	
Maximum	5.25 V	
Input low voltage (V_{IL})		
Minimum	0 V	
Maximum	0.8 V	
Output high current (I _{OH})		
P0.<07>	-24 mA maximum	
PFI <015>/P1/P2	-16 mA maximum	
Output low current (I _{OL})		
P0.<07>	24 mA maximum	
PFI <015>/P1/P2	16 mA maximum	

Digital I/O Characteristics

Positive-going threshold (VT+)	2.2 V maximum
Negative-going threshold (VT-)	0.8 V minimum
Delta VT hysteresis (VT+ - VT-)	0.2 V minimum
I_{IL} input low current $(V_{IN} = 0 V)$	-10 μA maximum
I_{IH} input high current ($V_{IN} = 5 \text{ V}$)	250 μA maximum

Figure 4. P0.<0..7>: I_{OH} versus V_{OH}


Figure 5. P0.<0..7>: I_{OL} versus V_{OL}

0 -5 -10 -15 -20 I_{OH} (mA) -25 -30 -35 55 °C; Vdd = 4.5 V -40 25 °C; Vdd = 5.0 V -45 --- 0 °C; Vdd = 5.5 -50 -3 5 V_{OH} (V)

Figure 6. PFI <0..15>/P1/P2: I_{OH} versus V_{OH}

Figure 7. PFI <0..15>/P1/P2: I_{OL} versus V_{OL}

General-Purpose Counters

Number of counter/timers	4
Resolution	32 bits

Amplicon.com

IT and Instrumentation for industry

Counter measurements	Edge counting, pulse, pulse width, semi-period, period, two-edge separation
Position measurements	X1, X2, X4 quadrature encoding with Channel Z reloading; two-pulse encoding
Output applications	Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling
Internal base clocks	100 MHz, 20 MHz, 100 kHz
External base clock frequency	0 MHz to 25 MHz; 0 MHz to 100 MHz on PXIe_DSTAR <a,b></a,b>
Base clock accuracy	50 ppm
Inputs	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock
Routing options for inputs	Any PFI, PXIe_DSTAR <a,b>, PXI_TRIG, PXI_STAR, analog trigger, many internal signals</a,b>
FIFO	127 samples per counter
1110	127 samples per counter

Frequency Generator

Number of channels	1
Base clocks	20 MHz, 10 MHz, 100 kHz
Divisors	1 to 16
Base clock accuracy	50 ppm

Phase-Locked Loop (PLL)

Number of PLLs 1

Table 3. Reference Clock Locking Frequencies

Reference Signal	PXI Express Locking Input Frequency (MHz)
PXIe_DSTAR <a,b></a,b>	10, 20, 100
PXI_STAR	10, 20
PXIe_CLK100	100

Table 3. Reference Clock Locking Frequencies (Continued)

Reference Signal	PXI Express Locking Input Frequency (MHz)
PXI_TRIG <07>	10, 20
PFI <015>	10, 20

Output of PLL	100 MHz Timebase; other signals derived
	from 100 MHz Timebase including 20 MHz
	and 100 kHz Timebases.

External Digital Triggers

Source	Any PFI, PXIe_DSTAR <a,b>, PXI_TRIG, PXI_STAR</a,b>
Polarity	Software-selectable for most signals
Analog input function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Convert Clock, Sample Clock Timebase
Analog output function	Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Counter/timer functions	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock
Digital waveform generation (DO) function	Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Digital waveform acquisition (DI) function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase

Device-to-Device Trigger Bus

Input source	PXI_TRIG <07>, PXI_STAR, PXIe_DSTAR <a,b></a,b>
Output destination	PXI_TRIG <07>, PXIe_DSTARC
Output selections	10 MHz Clock, frequency generator output, many internal signals
Debounce filter settings	90 ns, 5.12 μs, 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input

Bus Interface

Form factor	x1 PXI Express peripheral module, specification rev. 1.0 compliant
Slot compatibility	x1 and x4 PXI Express or PXI Express hybrid slots
DMA channels	8, analog input, analog output, digital input, digital output, counter/timer 0, counter/timer 1, counter/timer 2, counter/timer 3

Devices may be installed in PXI Express slots or PXI Express hybrid slots.

Power Requirements

Caution The protection provided by the device can be impaired if the device is used in a manner not described in the X Series User Manual.

+3.3 V	1.6 W
+12 V	19.8 W

Current Limits

+5 V terminal (connector 0)	1 A max
P0/PFI/P1/P2 and +5 V terminals combined	1.5 A max

Physical Characteristics

Device dimensions	Standard 3U PXI
Weight	198 g (7.0 oz)
I/O connectors	2 68-pin VHDCI

Caution If you need to clean the module, wipe it with a dry towel.

Calibration (Al and AO)

Recommended warm-up time	15 minutes
Calibration interval	2 years

IT and Instrumentation for industry **Amplicon**

Maximum Working Voltage

Maximum working voltage refers to the signal voltage plus the common-mode voltage.

Channel to earth	11 V, Measurement Category I
------------------	------------------------------

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Caution Do not use for measurements within Categories II, III, or IV.

Note Measurement Categories CAT I and CAT O (Other) are equivalent. These test and measurement circuits are not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV.

Shock and Vibration

Operational shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC-60068-2-27. Test profil developed in accordance with MIL-PRF-28800F.)
Random vibration	
Operating	5 to 500 Hz, 0.3 g _{rms}
Nonoperating	5 to 500 Hz, 2.4 g _{rms} (Tested in accordance with IEC-60068-2-64. Nonoperating test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Environmental

Operating temperature	0 to 55 °C
Storage temperature	-40 to 70 °C
Operating humidity	10 to 90% RH, noncondensing
Storage humidity	5 to 95% RH, noncondensing
Pollution degree	2
Maximum altitude	2,000 m

Safety

Indoor use only.

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class B emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class B emissions
- EN 55022 (CISPR 22): Class B emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class B emissions
- AS/NZS CISPR 22: Class B emissions
- FCC 47 CFR Part 15B: Class B emissions
- ICES-001: Class B emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe,

Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications, and additional information, refer to the *Online Product Certification* section.

CE Compliance (€

This product meets the essential requirements of applicable European Directives, as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Minimize Our Environmental Impact* web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit *ni.com/environment/weee*.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录

ni.com/environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs china.)

Device Pinout

Figure 8. NI PXIe-6345 Pinout

	_)
AI 0 (AI 0+)	68	34	AI 8 (
AI GND	67	33	Al 1 (
Al 9 (Al 1–)	66	32	AI GI
Al 2 (Al 2+)	65	31	AI 10
AI GND	64	30	AI 3 (
Al 11 (Al 3–)	63	29	AI GI
AI SENSE	62	28	Al 4 (
AI 12 (AI 4-)	61	27	AI GI
AI 5 (AI 5+)	60	26	AI 13
AI GND	59	25	AI 6 (
AI 14 (AI 6-)	58	24	AI GI
Al 7 (Al 7+)	57	23	AI 15
AI GND	56	22	AO 0
AO GND	55	21	AO 1
AO GND	54	20	APFI
D GND	53	19	P0.4
P0.0	52	18	D GN
P0.5	51	17	P0.1
D GND	50	16	P0.6
P0.2	49	15	D GN
P0.7	48	14	+5 V
P0.3	47	13	D GN
PFI 11/P2.3	46	12	D GN
PFI 10/P2.2	45	11	PFI 0
D GND	44	10	PFI 1
PFI 2/P1.2	43	9	D GN
PFI 3/P1.3	42	8	+5 V
PFI 4/P1.4	41	7	D GN
PFI 13/P2.5	40	6	PFI 5
PFI 15/P2.7	39	5	PFI 6
PFI 7/P1.7	38	4	D GN
PFI 8/P2.0	37	3	PFI 9
D GND	36	2	PFI 1
D GND	35	1	PFI 1

(AI 0-) (Al 1+) ND) (AI 2-) (AI 3+) ND (AI 4+)ND 3 (AI 5–) (AI 6+) ND (AI 7-) ΝD ΝD ΝD ND)/P1.0 /P1.1 ۷D ΝD 5/P1.5 6/P1.6 ۱D 9/P2.1 2/P2.4 4/P2.6

CONNECTOR 1 (AI 16-79)

B

CONNECTOR 0 (AI 0-15, AO, DIO)

	_	\
Al 71 (Al 71+)	1 35	5]
AI 78 (AI 70–)	2 36	3
AI 69 (AI 69+)	3 37	7
AI 68 (AI 68+)	4 38	3
AI 75 (AI 67–)	5 39	9
AI 66 (AI 66+)	6 40	5
AI 65 (AI 65+)	7 4	1
Al 72 (Al 64–)	8 42	2
AI GND	9 43	3
AI 55 (AI 55+)	10 44	1
AI 54 (AI 54+)	11 45	5
AI 61 (AI 53-)	12 46	3
AI 52 (AI 52+)	13 47	7
AI 51 (AI 51+)	14 48	3
AI 58 (AI 50-)	15 49	9
AI 49 (AI 49+)	16 50)
AI 48 (AI 48+)	17 5°	1
AI 47 (AI 39-)	18 52	2
AI 38 (AI 38+)	19 53	3
AI 37 (AI 37+)	20 54	1
AI 44 (AI 36-)	21 55	5
AI GND	22 56	3
AI 35 (AI 35+)	23 57	7
AI 34 (AI 34+)	24 58	3
AI 41 (AI 33-)	25 59	2
AI 32 (AI 32+)	26 60	
AI 23 (AI 23+)	27 6	1
AI 30 (AI 22-)	28 62	2
Al 21 (Al 21+)	29 63	3
AI 20 (AI 20+)	30 64	1
Al 27 (Al 19–)	31 65	5
AI 18 (AI 18+)	32 66	3
AI 17 (AI 17+)	33 67	
AI 24 (AI 16-)	34 68	3

AI 79 (AI 71-) AI 70 (AI 70+) AI 77 (AI 69-) AI 76 (AI 68-) AI 67 (AI 67+) Al 74 (Al 66-) AI 73 (AI 65-) AI 64 (AI 64+) AI GND AI 63 (AI 55-) AI 62 (AI 54-) AI 53 (AI 53+) AI 60 (AI 52-) AI 59 (AI 51-) AI 50 (AI 50+) AI 57 (AI 49-) AI 56 (AI 48-) AI 39 (AI 39+) AI 46 (AI 38-) AI 45 (AI 37-) AI 36 (AI 36+) AI SENSE 2 AI 43 (AI 35-) AI 42 (AI 34-) AI 33 (AI 33+) AI 40 (AI 32-) Al 31 (Al 23-) Al 22 (Al 22+) Al 29 (Al 21-) AI 28 (AI 20-) Al 19 (Al 19+) AI 26 (AI 18-) Al 25 (Al 17-)

Amplicon.com

IT and Instrumentation for industry

AI 16 (AI 16+)

Datasheet

Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: *Help»Patents* in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the National Instruments global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

© 2015 National Instruments. All rights reserved.

374652C-01

