SPECIFICATIONS

PXIe-4147

PXIe, 4-channel ±8 V, 3 A PXI Source Measure Unit

Contents

Definitions	1
Conditions	2
Block Diagrams	2
Instrument Capabilities	
Voltage	5
Current	6
Noise	6
Transient Response and Settling Time	8
Remote Sense	9
Load Regulation	9
Isolation.	9
Protection	10
Guard Output Characteristics	10
Output Resistance Programming Accuracy	10
Measurement and Update Timing	11
Triggers	
Physical	12
Calibration Interval.	13
Power Requirements	13
Environmental Characteristics	

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- Nominal specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- *Measured* specifications describe the measured performance of a representative model.

Specifications are Warranted unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- Ambient temperature¹ of 23 °C ± 5 °C
- Relative humidity between 10% and 70%, noncondensing. See Programming and
 Measurement Accuracy/Resolution for additional performance derating when operating
 above 70% relative humidity.
- Chassis with slot cooling capacity ≥38 W²
 - For chassis with slot cooling capacity = 38 W, fan speed set to HIGH
- Calibration interval of 1 year
- 30 minutes warm-up time
- Self-calibration performed within the last 24 hours
- niDCPower Aperture Time property or NIDCPOWER_ATTR_APERTURE_TIME attribute set to 2 power-line cycles (PLC)

Block Diagrams

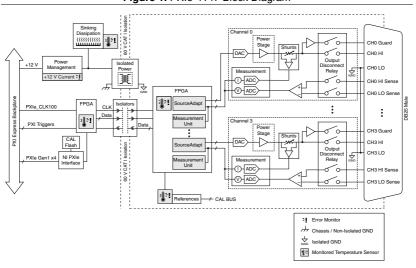


Figure 1. PXIe-4147 Block Diagram

¹ The ambient temperature of a PXI system is defined as the temperature at the chassis fan inlet (air intake).

 $^{^2}$ For increased capability, NI recommends installing the PXIe-4147 in a chassis with slot cooling capacity ${\ge}58$ W.

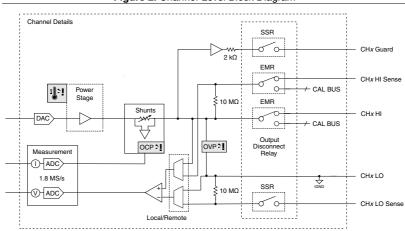


Figure 2. Channel-Level Block Diagram

Instrument Capabilities

Channels	0 through 3 ³
DC voltage ranges	1 V, 8 V
DC current ranges	$1~\mu A,10~\mu A,100~\mu A,1~m A,10~m A,100~m A,3~A$

The following figure illustrates the voltage and the current source and sink ranges of the PXIe-4147.

³ Channels isolated from earth ground, but share a common LO for all channels (bank isolation).

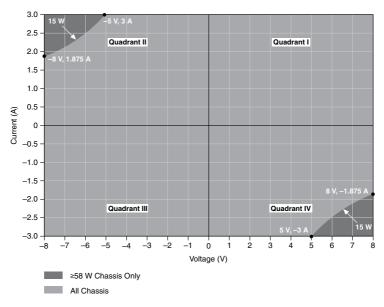


Figure 3. PXIe-4147 Quadrant Diagram, Any Channel

vailable DC output power ⁴	
Sourcing ⁵	
All chassis	24 W per channel and 40 W total
Sinking	
≥58 W Slot Cooling Capacity Chassis ⁶	24 W per channel and 40 W total
<58 W Slot Cooling Capacity Chassis	15 W per channel and 15 W total

⁴ Power limit defined by voltage measured between HI and LO terminals.

Sourcing power may be limited by total power available from the chassis power supply. Refer to the *Performing a Power Budget on a PXI/PXIe System* article for more information.

 $^{^6}$ When sinking more than 15 W into the PXIe-4147, transients may not exceed 200 mW/ μ s.

Voltage

Table 1. Voltage Programming and Measurement Accuracy/Resolution

Range	Resolution (Noise Limited)	Noise (0.1 Hz to 10 Hz,	Accuracy ± (% of Tambient 23 °C ±5		Tempco ⁸ ± (% of Voltage + Offset)/°C
		peak-to- peak, typical)	Multiple Channels ¹⁰	Single Channel ¹¹	T _{ambient} 0 °C to 55 °C, T _{cal} ±5 °C
1 V	100 nV	2 μV	0.025% + 110 μV	0.02% + 70 μV	0.0002% + 1 μV
8 V	1 μV	12 μV	0.02% + 600 μV	$0.015\% + 400 \mu V$	

Refer to the *Remote Sense* and *Load Regulation* sections for additional accuracy derating and conditions.

 $^{^8}$ Temperature coefficient applies beyond 23 °C ± 5 °C ambient within ± 5 °C of $T_{cal}.$

⁹ T_{cal} is the internal device temperature recorded by the PXIe-4147 at the completion of the last self-calibration.

Multiple-channel specifications apply whenever two or more channels are connected and sourcing/ sinking current. Multiple-channel specifications account for interactions between the channels when operated at high current, including board heating.

Single-channel specifications assume only one channel is connected and sourcing/sinking current which results in improved accuracy due to the reduction of effects between the channels, including board heating. When transitioning from a multiple-channel configuration to a single-channel configuration, a ten-minute cool down period is required to meet Single Channel accuracy specifications.

Current

Table 2. Current Programming and Measurement Accuracy/Resolution

Range	Resolution (Noise Limited)	Noise (0.1 Hz to 10 Hz,	Accuracy ± (% of 0	Current + Offset) ¹²	Tempco ⁸ ± (% of Current + Offset)/°C
		peak-to- peak,	T _{ambient} 23 °C ±	5 °C, T _{cal} ⁹ ±5 °C	T _{ambient} 0 °C to
		typical)	Multiple Channels ¹⁰	Single Channel ¹¹	55 °C, T _{cal} ±5 °C
1 μΑ	100 fA	8 pA	0.045% + 250 pA	0.035% + 150 pA	0.0003% + 2 pA
10 μΑ	1 pA	60 pA	0.05% + 1.6 nA	0.035% + 1 nA	
100 μΑ	10 pA	400 pA	0.045% + 14 nA	0.035% + 8 nA	
1 mA	100 pA	4 nA	0.04% + 120 nA	0.03% + 70 nA	
10 mA	1 nA	40 nA	$0.04\% + 1.2 \mu\text{A}$	0.03% + 700 nA	
100 mA	10 nA	400 nA	$0.045\% + 12 \mu A$	0.035% + 7 μA	
3 A	1 μΑ	40 μΑ	$0.07\% + 800 \mu A$	$0.07\% + 400 \mu A$	

Noise

Wideband source noise¹³ <10 mV_{pk-pk}, typical

The following figures illustrate measurement noise as a function of measurement aperture for the PXIe-4147.

Relative humidity between 10% and 70%, noncondensing. When operating above 70% relative humidity, add 30 pA to current accuracy specifications.

^{13 10} Hz to 20 MHz bandwidth. PXIe-4147 configured for normal transient response.

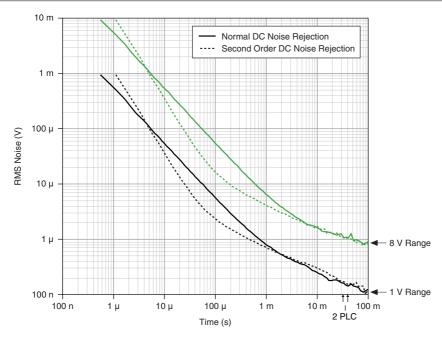


Figure 4. Voltage RMS Noise Versus Aperture Time, Nominal

Note When the aperture time is set to two power-line cycles (PLCs), measurement noise differs slightly depending on whether the **niDCPower Power Line Frequency** property or NIDCPOWER_ATTR_POWER_LINE_FREQUENCY attribute is set to 50 Hz or 60 Hz.

Note To configure normal or second-order DC noise rejection, set the **niDCPower DC Noise Rejection** property or NIDCPOWER_ATTR_DC_NOISE_REJECTION attribute.

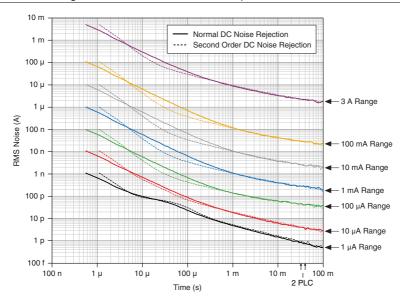


Figure 5. Current RMS Noise Versus Aperture Time, Nominal

Note When the aperture time is set to two power-line cycles (PLCs), measurement noise differs slightly depending on whether the **niDCPower Power Line Frequency** property or NIDCPOWER_ATTR_POWER_LINE_FREQUENCY attribute is set to 50 Hz or 60 Hz.

Note To configure normal or second-order DC noise rejection, set the niDCPower DC Noise Rejection property or NIDCPOWER_ATTR_DC_NOISE_REJECTION attribute.

Transient Response and Settling Time

Settling time ¹⁴	
Voltage mode, ≤4 V step, unloaded ¹⁵	<50 μs, typical
Current mode, full-scale step, 3 A to $100~\mu\text{A}$ ranges 16	<50 μs, typical

¹⁴ Measured as the time to settle to within 0.1% of step amplitude, PXIe-4147 configured for fast transient response.

 $^{^{15}}$ Current limit set to ${\ge}30~\mu A$ and ${\ge}20\%$ of the selected current limit range.

Voltage limit set to ≥ 2 V, resistive load set to 1 V/selected current range.

Current mode, full-scale step, $10~\mu A$ range 16	<100 μs, typical
Current mode, full-scale step, 1 μA range 16	<200 μs, typical
Transient response ¹⁷	
3 A to 100 μA ranges	<40 μs, typical
10 μA range	<100 μs, typical
1 μA range	<200 μs, typical

Remote Sense

Voltage accuracy	Add (10 ppm of voltage range + 25 μ V) per volt of LO lead drop, plus 10 μ V per volt of HI lead drop to voltage accuracy specification
Maximum sense lead resistance	100 Ω
Maximum lead drop per lead	1 V, maximum 8 V between HI and LO terminals

Load Regulation

Voltage, local sense ¹⁸	100 $\mu V/mA$, nominal; 200 $\mu V/mA$, maximum
Voltage, remote sense	Error included in accuracy specifications.
Current	Error included in accuracy specifications.

Isolation

Isolation voltage, any pin to earth ground ¹⁹	60 V DC, CAT I
Withstand voltage	$800~\mathrm{V_{pk}}$

¹⁷ Time to recover within 10 mV after a load current change from 10% to 90% of range, PXIe-4147 configured for fast transient response.

¹⁸ At the output terminals of attached TB-414X Screw Terminal Connector Kit.

¹⁹ Channels isolated from earth ground, but share a common LO for all channels (bank isolation).

Protection

bsolute maximum voltage to Output L Output HI	±10 V
All other pins	±60 V
Output channel protection	
Overcurrent or overvoltage	Automatic shutdown, output disconnect relay opens
Overtemperature	Automatic shutdown, output disconnect relay opens

Guard Output Characteristics

Cable guard	
Output impedance	$2 \text{ k}\Omega$, nominal
Offset voltage	1 mV, typical

Output Resistance Programming Accuracy

Table 3. Output Resistance Programming Accuracy

- Laboratoria de la constante				
Current Level/ Limit Range	Voltage Mode		Current Mode	
	Programmable Resistance Range	Accuracy, ±(% of Resistance Setting + Offset) ²⁰	Programmable Resistance Range	Accuracy, ±(% of resistance setting
1 μΑ	0 to ±4 MΩ	$0.05\% + 100 \Omega$	±2.5 MΩ to ±infinity	0.05% 100 GΩ
10 μΑ	0 to $\pm 400~k\Omega$	$0.05\% + 10 \Omega$	±250 kΩ to ±infinity	$0.05\% \parallel 10~\mathrm{G}\Omega$
100 μΑ	0 to $\pm 40~k\Omega$	$0.05\% + 1 \Omega$	$\pm 25 \text{ k}\Omega$ to $\pm \text{infinity}$	0.05% 1 GΩ
1 mA	0 to ± 4 k Ω	0.05% + 100 mΩ	±2.5 kΩ to ±infinity	0.05% 100 ΜΩ

Accuracy is typical and applies within ± 5 °C of last self calibration.

Table 3. Output Resistance Programming Accuracy (Continued)

Current	Voltage Mode		Current Mode	
Level/ Limit Range	Programmable Resistance Range	Accuracy, ±(% of Resistance Setting + Offset) ²⁰	Programmable Resistance Range	Accuracy, ±(% of resistance setting II Offset) ²⁰
10 mA	0 to ±400 Ω	$0.05\% + 10 \text{ m}\Omega$	$\pm 250~\Omega$ to $\pm infinity$	0.05% 10 MΩ
100 mA	0 to ±40 Ω	$0.05\% + 1 \text{ m}\Omega$	$\pm 25~\Omega$ to $\pm infinity$	0.05% 1 MΩ
3 A	0 to $\pm 1.25~\Omega$	0.08% + 100 μΩ	±750 mΩ to ±infinity	0.08% 10 kΩ

Measurement and Update Timing

Available sample rates ²¹	(1.8 MS/s)/N, nominal	
where		
$N=1, 2, 3, \dots 2^{24}$		
S is samples		
Sample rate accuracy	Equal to PXIe_CLK100 accuracy, nominal	
Maximum measure rate to host	1.8 MS/s per channel, continuous, nominal	
Maximum source update rate ²²	100,000 updates/s, nominal	
Input trigger to		
Source event delay	10 μs, nominal	
Source event jitter	2 μs _{pk-pk} , nominal	
Measure event jitter	2 μs _{pk-pk} , nominal	

²⁰ Accuracy is typical and applies within ± 5 °C of last self calibration.

When source-measuring, both the NI-DCPower Source Delay and Aperture Time properties affect the sampling rate. When taking a measure record, only the Aperture Time property affects the sampling rate.

²² As the source delay is adjusted or if advanced sequencing is used, maximum source update rates may vary.

Triggers

Types	Start
31	Source
	Sequence Advance
	Measure
Sources (PXI trigger lines 0 to 7) ²³	
Polarity	Active high (not configurable)
Minimum pulse width	100 ns
Destinations ²⁴ (PXI trigger lines 0 to	7) ²³
Polarity	Active high (not configurable)
Minimum pulse width	>200 ns
put triggers (events)	
Types	Source Complete
	Sequence Iteration Complete
	Sequence Engine Done
	Measure Complete
Destinations (PXI trigger lines 0 to 7)	23
Polarity	Active high (not configurable)
Pulse width	230 ns

Physical

Dimensions	3U, one-slot, PXI Express/CompactPCI Express module	
	$2.0 \text{ cm} \times 13.0 \text{ cm} \times 21.6 \text{ cm}$ (0.8 in. × 5.1 in. × 8.5 in.)	
Weight	448 g (15.8 oz)	
Front panel connectors	25-position D-SUB, male	

²³ Pulse widths and logic levels are compliant with PXI Express Hardware Specification Revision 1.0 ECN 1

²⁴ Input triggers can come from any source (PXI trigger or software trigger) and be exported to any PXI trigger line. This allows for easier multi-board synchronization regardless of the trigger source.

Calibration Interval

Power Requirements

+3.3 V	1 A, typical
+12 V	1.3 A, typical at idle; 6 A, maximum at full load

Environmental Characteristics

Temperature and Humidity	
Temperature	
Operating	0 °C to 55 °C ²⁵
Storage	-40 °C to 71 °C
Humidity	
Operating	10% to 90%, noncondensing ²⁶
Storage	5% to 95%, noncondensing
Pollution Degree	2
Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)

Amplicon

²⁵ Not all chassis can achieve this ambient temperature range. Refer to PXI chassis specifications to determine the ambient temperature ranges your chassis can achieve.

When transitioning a device from a storage or operation environment with relative humidity above 70%, device should be allowed to stabilize in the lower humidity environment for several hours before use. Refer to the PXIe-4147 Programming and Measurement Accuracy/Resolution specifications for additional performance derating when operating above 70% relative humidity.

Datasheet

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: *Help»Patents* in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-7014, and DFAR 252.227-7015.

© 2020—2021 National Instruments Corporation. All rights reserved.

378264C-01

