SPECIFICATIONS

PXIe-4137

PXIe, ±200 V, ±1 A (DC)/±3 A (Pulsed), 100 fA Precision System PXI Source Measure Unit

These specifications apply to the PXIe-4137.

Note In this document, the PXIe-4137 (40W) and PXIe-4137 (20W) are referred to inclusively as the PXIe-4137. The information in this document applies to all versions of the PXIe-4137 unless otherwise specified. To determine which version of the module you have, locate the device name in one of the following places:

- In MAX—The PXIe-4137 (40W) shows NI PXIe-4137 (40W), and the PXIe-4137 (20W) shows as NI PXIe-4137.
- **Device front panel**—The PXIe-4137 (40W) shows *PXIe-4137 40W System SMU*, and the PXIe-4137 (20W) shows *NI PXIe-4137 Precision System SMU* on the front panel.

Contents

Definitions	2
Conditions	
Cleaning Statement	
Device Capabilities	
Voltage	
Current	
Noise	8
Sinking Power vs. Ambient Temperature Derating	
Output Resistance Programming Accuracy	
Overvoltage Protection	
Pulsed Operation	
Extended Range Pulsing for PXIe-4137 (40W)	13
Extended Range Pulsing for PXIe-4137 (20W)	
Transient Response and Settling Time	
Load Regulation	
Measurement and Update Timing Characteristics	
Remote Sense	
Safety Interlock	
Examples of Calculating Accuracy Specifications	
Examples of Determining Extended Range Pulse Parameters and Optimizing Slew	
Rate using NI SourceAdapt	25
Trigger Characteristics	

Donto et a co	22
Protection	
Safety Voltages	33
Current Ratings	33
Guard Output Characteristics	33
Calibration Interval	33
Power Requirement	33
Physical	34
Environmental Characteristics	34
Environmental Standards	34
Safety Compliance Standards	35
EMC Standards	
Environmental Management	35
Waste Electrical and Electronic Equipment (WEEE)	36
电子信息产品污染控制管理办法(中国 RoHS)	
Product Certifications and Declarations	36
NI Services	

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- Typical specifications describe the performance met by a majority of models.
- Nominal specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- Measured specifications describe the measured performance of a representative model.

Specifications are Warranted unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- Ambient temperature 1 of 23 °C \pm 5 °C
- Chassis with slot cooling capacity ≥38 W²
 - For chassis with slot cooling capacity = 38 W, fan speed set to HIGH
- · Calibration interval of 1 year
- · 30 minutes warm-up time

¹ The ambient temperature of a PXI system is defined as the temperature at the chassis fan inlet (air intake).

For increased capability, NI recommends installing the PXIe-4137 (40W) in a chassis with slot cooling capacity ≥58 W.

- Self-calibration performed within the last 24 hours
- NI-DCPower Aperture Time is set to 2 power-line cycles (PLC)

Cleaning Statement

Notice Clean the hardware with a soft, nonmetallic brush. Make sure that the hardware is completely dry and free from contaminants before returning it to service.

Device Capabilities

The following table and figure illustrate the voltage and the current source and sink ranges of the PXIe-4137.

Table 1. Current Source and Sink Ranges

DC current source and sink ranges
1 μΑ
10 μΑ
100 μΑ
1 mA
10 mA
100 mA
1 A
3 A ⁴

 $^{^3}$ Voltage levels and limits >|40 VDC| require the safety interlock input to be closed.

⁴ Current is limited to 1 A DC. Higher levels are pulsing only.

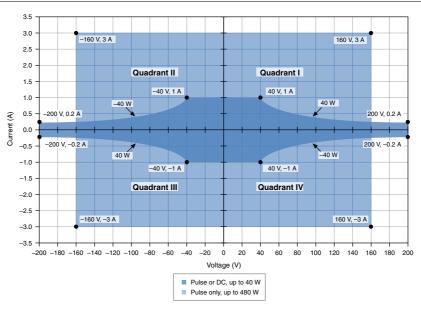


Figure 1. Quadrant Diagram for PXIe-4137 (40W)

For additional information related to the Pulse Voltage or Pulse Current settings of the **Output Function**, for the PXIe-4137 (40W), including pulse on time and duty cycle limits for a particular operating point, refer to *Pulsed Operation* on page 13. For supplementary examples, refer to *Examples of Determining Extended Range Pulse Parameters and Optimizing Slew Rate using NI SourceAdapt* on page 25.

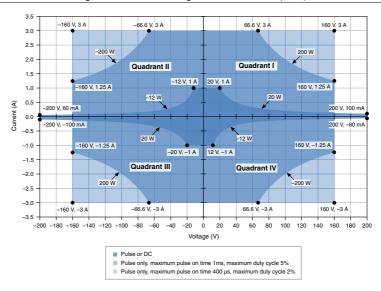


Figure 2. Quadrant Diagram for PXIe-4137 (20W)

DC sourcing power and sinking power are limited to the values in the following table, regardless of output voltage. ⁵

Table 2. DC Sourcing & Sinking Power

14210 11 20 004101119 4 011111119 1 01101				
Model Variant	Chassis Type	DC Sourcing Power	DC Sinking Power	
PXIe-4137 (40W)	≥58 W Slot Cooling Capacity	40 W	40 W	
	<58 W Slot Cooling Capacity	20 W	12 W	
PXIe-4137 (20W)	≥58 W Slot Cooling Capacity	20 W	12 W	
	<58 W Slot Cooling Capacity	20 W	12 W	

⁵ Power limit defined by voltage measured between HI and LO terminals.

Caution Limit DC power sinking to 12 W where applicable as indicated in the above table. For <58 W cooling slots,

- Additional derating applies to sinking power when operating at an ambient temperature of >45 °C.
- If the PXI Express chassis has multiple fan speed settings, set the fans to the highest setting.

Related Information

Sinking Power vs. Ambient Temperature Derating on page 10

Extended Range Pulsing for PXIe-4137 (40W)(1) on page 13

Extended Range Pulsing for PXIe-4137 (20W)(1) on page 18

Voltage

Table 3. Voltage Programming and Measurement Accuracy/Resolution

Range	Resolution (noise limited)	Noise (0.1 Hz to	, ,	°C ±5 °C) ± (% e + offset) ⁶	Tempco ± (% of voltage +
		10 Hz, peak to peak), Typical	T _{cal} ±5 °C ⁷	T _{cal} ±1 °C ⁷	offset)/°C, 0 °C to 55 °C
600 mV	100 nV	2 μV	0.020% + 50 μV	0.017% + 30 μV	0.0005% + 1 μV
6 V	1 μV	6 μV	0.020% + 320 μV	0.017% + 90 μV	
20 V	10 μV	20 μV	0.022% + 1 mV	0.017% + 400 μV	
200 V	100 μV	200 μV	0.025% + 10 mV	0.020% + 2.5 mV	

Related Information

Noise on page 8

Load Regulation on page 20

Remote Sense on page 22

⁶ Accuracy is specified for no load output configurations. Refer to *Load Regulation* and *Remote Sense* sections for additional accuracy derating and conditions.

⁷ T_{cal} is the internal device temperature recorded by the PXIe-4137 at the completion of the last self-calibration.

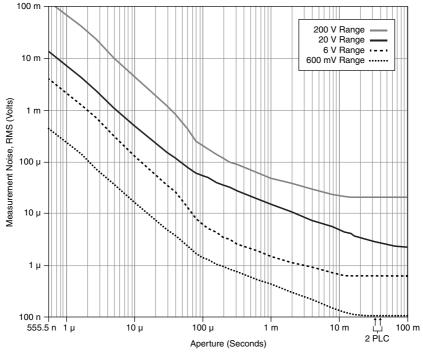
Current

Table 4. Current Programming and Measurement Accuracy/Resolution

Range	Resolution (noise	Noise (0.1 Hz to	, ,	3 °C ± 5 °C) ± ent + offset)	Tempco ± (% of current +
	limited)	10 Hz, peak to peak), Typical	T _{cal} ± 5 °C ⁸	T _{cal} ± 1 °C ⁸	offset)/°C, 0 °C to 55 °C
1 μΑ	100 fA	4 pA	0.03% + 100 pA	0.022% + 40 pA	0.0006% + 4 pA
10 μΑ	1 pA	30 pA	0.03% + 700 pA	0.022% + 300 pA	0.0006% + 22 pA
100 μΑ	10 pA	200 pA	0.03% + 6 nA	0.022% + 2 nA	0.0006% + 200 pA
1 mA	100 pA	2 nA	0.03% + 60 nA	0.022% + 20 nA	0.0006% + 2 nA
10 mA	1 nA	20 nA	0.03% + 600 nA	0.022% + 200 nA	0.0006% + 20 nA
100 mA	10 nA	200 nA	0.03% + 6 μΑ	0.022% + 2 μΑ	0.0006% + 200 nA
1 A	100 nA	2 μΑ	$0.04\% + 60 \mu A$	0.035% + 20 μΑ	0.0006% + 2 μA
3 A ⁹	1 μΑ	20 μΑ	0.08% + 900 μΑ	0.075% + 600 μA	0.0018% + 20 μA

Noise

Wideband source noise	<20 mV peak-to-peak in 20 V range, device
	configured for normal transient response,
	10 Hz to 20 MHz, typical


The following figures illustrate measurement noise as a function of measurement aperture for the PXIe-4137.

⁸ T_{cal} is the internal device temperature recorded by the PXIe-4137 at the completion of the last self-calibration.

⁹ 3 A range above 1 A is for pulsing only.

Figure 3. Voltage Measurement Noise vs. Measurement Aperture, Nominal

Note When the aperture time is set to 2 power-line cycles (PLCs), measurement noise differs slightly depending on whether the **Power Line Frequency** is set to 50 Hz or 60 Hz.

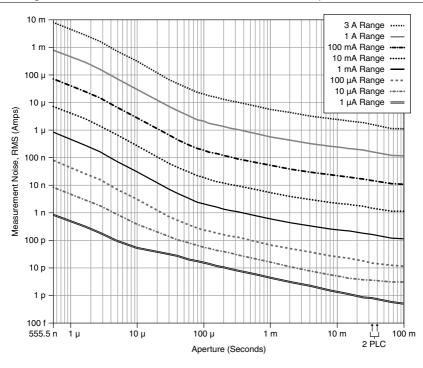
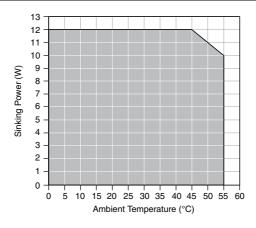


Figure 4. Current Measurement Noise vs. Measurement Aperture, Nominal

Note When the aperture time is set to 2 power-line cycles (PLCs), measurement noise differs slightly depending on whether the **Power Line Frequency** is set to 50 Hz or 60 Hz.

Related Information

Voltage on page 7


Sinking Power vs. Ambient Temperature Derating

The following figure illustrates sinking power derating as a function of ambient temperature.

This applies to the PXIe-4137 (20W) when used with any chassis and only applies to the PXIe-4137 (40W) when used with a chassis with slot cooling capacity <58 W.

Figure 5. Sinking Power vs. Ambient Temperature Derating

Note When using the PXIe-4137 (40W) with a chassis with slot cooling capacity ≥58 W, ambient temperature derating does not apply.

Related Information

Device Capabilities on page 3

Output Resistance Programming Accuracy

Table 5. Output Resistance Programming Accuracy Characteristics

Current Level/Limit Range	Programmable Resistance Range, Voltage Mode	Programmable Resistance Range, Current Mode	Accuracy ± (% of resistance setting), $T_{cal} \pm 5 ^{\circ}C^{10}$
1 μΑ	0 to ± 5 M Ω	$\pm 5~M\Omega$ to $\pm infinity$	0.03%
10 μΑ	0 to $\pm 500~\text{k}\Omega$	$\pm 500~k\Omega$ to $\pm infinity$	
100 μΑ	0 to $\pm 50~\text{k}\Omega$	$\pm 50~k\Omega$ to $\pm infinity$	
1 mA	0 to ± 5 k Ω	$\pm 5~k\Omega$ to $\pm infinity$	
10 mA	0 to ±500 Ω	$\pm 500~\Omega$ to $\pm infinity$	
100 mA	0 to ±50 Ω	$\pm 50~\Omega$ to $\pm infinity$	
1 A	0 to ±5 Ω	$\pm 5 \Omega$ to $\pm infinity$	
3 A ¹¹	0 to ± 500 m Ω	$\pm 500 \text{ m}\Omega$ to $\pm \text{infinity}$	

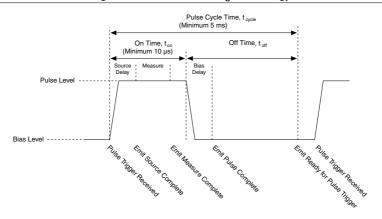
Overvoltage Protection

Accuracy ¹² (% of OVP limit + offset)	0.1% + 200 mV, typical
Temperature coefficient (% of OVP limit + offset)/°C	$0.01\% + 3 \text{ mV/}^{\circ}\text{C}$, typical
Measurement location	Local sense
Maximum OVP limit value	210 V
Minimum OVP limit value	2 V

 $^{^{10}}$ T_{cal} is the internal device temperature recorded by the PXIe-4137 at the completion of the last self-calibration.

¹¹ 3 A range above 1 A is for pulsing only.

 $^{^{12}}$ Overvoltage protection accuracy is valid with an ambient temperature of 23 °C \pm 5 °C and with T_{cal} \pm 5 °C. T_{cal} is the internal device temperature recorded by the PXIe-4137 at the completion of the last self-calibration.


Pulsed Operation

Dynamic load, minimum pulse cycle time¹³

 $100 \mu s/A$

The following figure visually explains the terms used in the extended range pulsing sections.

Figure 6. Definition of Pulsing Terminology

Extended Range Pulsing for PXIe-4137 (40W)¹⁵

The following figures illustrate the maximum pulse on time and duty cycle for the PXIe-4137 (40W) in a \geq 58 W cooling slot, for a desired pulse voltage and pulse current given zero bias voltage and current. The shaded areas allow for a quick approximation of output limitations and limiting parameters. Actual limits are described by equations in *Table 6*. on page 15.

For example, given a continuous pulsing load, if the largest dynamic step in current that the load sources/sinks is from 0.5 A to 1.0 A, then the maximum SMU current step is 0.5 A. Thus, the minimum dynamic load pulse cycle time is 50 μs. Minimum dynamic load pulse cycle time is independent of output voltage.

Extended range pulses fall outside DC range limits for either current or power. In-range pulses fall within DC range limits and are not subject to extended range pulsing limitations. Extended range pulsing is enabled by setting the Output Function to Pulse Voltage or Pulse Current.

3.0 2.8 On Time (ms) 2.6 -Limited by Maximum On Time, T_{co} (Equation 1) 20 - 200 2.4 2 – 20 2.2 <2 2.0 Pulse Energy, (Equation 3 or 8) Pulse Current (A) 1.8 1.6 1.4 1.2 1.0 8.0 0.6 0.4 0.2 0.0 0.10 160.00 1.00 10.00

Figure 7. Pulse On-time vs Pulse Current and Pulse Voltage

Note Equations to solve for maximum pulse on time, t_{onMax} , are shown in *Table 6*. on page 15. Additionally, Equation 8 solves for pulse on time, t_{on} , in terms of maximum pulse energy in *Example 1: Determining Extended Range Pulse On Time and Duty Cycle Parameters for the PXIe-4137 (40W) on page 26.*

Pulse Voltage (V)

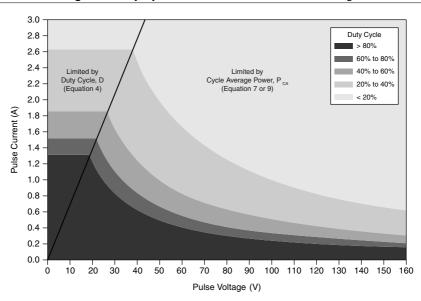


Figure 8. Duty Cycle vs Pulse Current and Pulse Voltage

Note Equations to solve for maximum duty cycle, D_{Max} , are shown in *Table 6*. on page 15. Additionally, Equation 9 solves for pulse off time, t_{off} , in terms of maximum pulse energy in *Example 1: Determining Extended Range Pulse On Time and Duty Cycle Parameters for the PXIe-4137 (40W) on page 26.*

Bias level limits		
Maximum voltage, V _{bias}	200 V	
Maximum current, I _{bias}	1 A	

Table 6. PXIe-4137 (40W) Pulse Level Limits

Specification	Value	Equation
Maximum voltage, V _{pulseMax}	160 V	_
Maximum current, I _{pulseMax}	3 A	

Amplicon

Table 6. PXIe-4137 (40W) Pulse Level Limits (Continued)

Specif	ication	Value	Equation
Maximum on time, t _{onMax} ¹⁶	If I _{pulse} > 1 A and ≥58 W Slot	Calculate using the equation or	$t_{onMax} = 100 \text{ ms} * \frac{2 \text{ A}}{ I_{pulse} - 1\text{A}}$
	Cooling Capacity Chassis	refer to Figure 7. on page 14 to estimate	, where t_{onMax} is ≤ 167 s (Equation 1)
		the value.	, 1
	If I _{pulse} > 1 A and <58 W Slot	Calculate using the equation.	$t_{onMax} = 10 \text{ ms} * \frac{2 \text{ A}}{ I_{pulse} - 1\text{A}}$
	Cooling Capacity Chassis		, where t_{onMax} is $\leq 167 s$
			(Equation 2)
	$\begin{array}{c} \text{If } I_{pulse} \leq \\ 1 \text{ A} \end{array}$	$t_{\text{onMax}} = 167 \text{ s}$	_
Maximum pu E _{pulseMax} ¹⁷	ilse energy,	0.4 J	$E_{\text{pulse}} = \left V_{\text{pulse}} * I_{\text{pulse}} * t_{\text{on}} \right $
			, where $E_{pulse} < E_{pulseMax}$
			(Equation 3)

¹⁶ Pulse on time is measured from the start of the leading edge to the start of the trailing edge. See Figure 6. on page 13.

¹⁷ Refer to Figure 7. on page 14 to estimate the value and determine the limiting equation for a PXIe-4137 (40W) in a ≥58 W Slot Cooling Capacity Chassis.

Table 6. PXIe-4137 (40W) Pulse Level Limits (Continued)

Specification		Value	Equation
Maximum duty cycle, D _{Max} ¹⁸	If≥58 W Slot Cooling Capacity Chassis	Calculate using the equation or refer to Figure 8. on page 15 to estimate the value.	$D_{Max} = \frac{(1.18 \text{ A})^2 - I_{bias} ^2}{ I_{pulse} ^2 - I_{bias} ^2} * 100\%$ (Equation 4)
	If <58 W Slot Cooling Capacity Chassis	Calculate using the equation.	$D_{Max} = \frac{(1 \text{ A})^2 - I_{bias} ^2}{ I_{pulse} ^2 - I_{bias} ^2} *100\%$ (Equation 5)
Minimum pulse cycle time, t _{cycleMin}		5 ms	$t_{cycle} = t_{on} + t_{off}$, where $t_{cycle} > t_{cycleMin}$
			(Equation 6)
Maximum cycle average power,	≥58 W Slot Cooling Capacity Chassis	20 W	$P_{CA} = \frac{\left V_{pulse} * I_{pulse} * t_{on}\right + \left V_{bias} * I_{bias} * t_{off}\right }{t_{on} + t_{off}}$
P _{CAMax} ¹⁹	<58 W Slot Cooling Capacity Chassis	10 W	, where P _{CA} < P _{CAMax} (Equation 7)

Refer to Figure 8. on page 15 to estimate the value and determine the limiting equation for a PXIe-4137 (40W) in a ≥58 W Slot Cooling Capacity Chassis. If D≥100%, consider switching Output Function from Pulse mode to DC mode.

Refer to Figure 8. on page 15 to estimate the value and determine the limiting equation for a PXIe-4137 (40W) in a ≥58 W Slot Cooling Capacity Chassis.

Note Software will not allow settings that violate these limiting equations and will generate an error.

Related Information

Device Capabilities on page 3

Extended Range Pulsing for PXIe-4137 (20W)²⁰

Bias level limits	
Maximum voltage	200 V
Maximum current	1 A
Pulse level limits	
Maximum voltage	160 V
Maximum current	3 A
Maximum on time ²¹	1 ms
Minimum pulse cycle time	5 ms
Energy	0.2 J
Maximum cycle average power	10 W
Maximum duty cycle	5%

Related Information

Device Capabilities on page 3

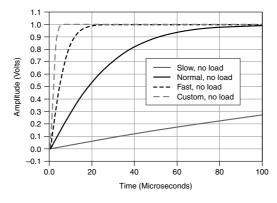
Transient Response and Settling Time

Transient response	<70 µs to recover within 0.1% of voltage range after a load current change from 10% to 90% of range, device configured for fast transient response, typical
Maximum slew rate ^{22,23}	0.5Α/μs

Extended range pulses fall outside DC range limits for either current or power. In-range pulses fall within DC range limits and are not subject to extended range pulsing limitations. Extended range pulsing is enabled by configuring the Output Function to Pulse Voltage or Pulse Current.

²¹ Pulse on time is measured from the start of the leading edge to the start of the trailing edge. See Figure 6. on page 13.

²² Optimize transient response, overshoot, and slew rate with NI SourceAdapt by adjusting the Transient Response.


²³ To improve the slew rate, see Examples of Determining Extended Range Pulse Parameters and Optimizing Slew Rate using NI SourceAdapt on page 25.

Settling	time24
Semme	ume-

Voltage mode, 180 V step, unloaded ²⁵	<500 μs, typical
Voltage mode, 5 V step or smaller, unloaded ²⁶	<70 μs, typical
Current mode, full-scale step, 3 A to $100~\mu A~ranges^{27}$	<50 μs, typical
Current mode, full-scale step, 10 μ A range ²⁷	<150 μs, typical
Current mode, full-scale step, 1 μ A range ²⁷	<300 μs, typical

The following figures illustrate the effect of the transient response setting on the step response of the PXIe-4137 for different loads.

²⁴ Measured as the time to settle to within 0.1% of step amplitude, device configured for fast transient response.

²⁵ Current limit set to \geq 60 μ A and \geq 60% of the selected current limit range.

²⁶ Current limit set to \geq 20 μ A and \geq 20% of selected current limit range.

²⁷ Voltage limit set to ≥2 V, resistive load set to 1 V/selected current range.

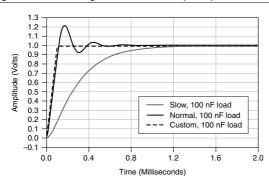


Figure 10. 1 mA Range, 100 nF Load Step Response, Nominal

Load Regulation

Device configured for local sense	200 mV per A of output load change (measured between output channel terminals) , typical
Device configured for remote sense	$100~\mu V$ per A of output load change (measured between sense terminals) , typical
Current, device configured for local or remote sense	Load regulation effect included in current accuracy specifications, typical

Related Information

Voltage on page 7

Measurement and Update Timing Characteristics

Available sample rates ²⁸	$(1.8 \text{ MS/s})/N \text{ where } N = 1, 2, 3, \dots 2^{24},$ nominal
Sample rate accuracy	Equal to PXIe_CLK100 accuracy, nominal
Maximum measure rate to host	1.8 MS/s per channel, continuous, nominal

When sourcing while measuring, both the Source Delay and Aperture Time affect the sampling rate. When taking a measure record, only the Aperture Time affects the sampling rate.

Sequence mode	100,000 updates/s (10 μs/update), nominal
Timed output mode	80,000 updates/s (12.5 μs/update), nominal
Input trigger to	
Source event delay	10 μs, nominal
Source event jitter	1 μs, nominal
Measure event jitter	1 μs, nominal
Pulse mode timing and accuracy ³⁰	
Minimum pulse on time ³¹	
PXIe-4137 (40W) ³²	10 μs, nominal
PXIe-4137 (20W)	50 μs, nominal
Minimum pulse off time ³³	50 μs, nominal
Pulse on time or off time	100 ns, nominal
programming resolution	
Pulse on time or off time	±5 μs, nominal
programming accuracy	
Pulse on time or off time jitter	1 μs, nominal

Amplicon

As the source delay is adjusted or if advanced sequencing is used, maximum source rates vary. Timed output mode is enabled in Sequence Mode by setting Sequence Step Delta Time Enabled to True. Additional timing limitations apply when operating in pulse mode (Output Function is set to Pulse Voltage or Pulse Current).

³⁰ Pulse mode is enabled when the Output Function is set to Pulse Voltage or Pulse Current. This mode enables access to extended range pulsing capabilities. For PXIe-4137 (20W), shorter minimum on times for in-range pulses can be achieved using Sequence mode or Timed Output mode with the Output Function set to Voltage or Current.

³¹ Pulse on time is measured from the start of the leading edge to the start of the trailing edge. See Figure 6. on page 13.

³² Optimize transient response, overshoot, and slew rate with NI SourceAdapt by adjusting the Transient Response.

³³ Pulses fall inside DC limits. Pulse off time is measured from the start of the trailing edge to the start of a subsequent leading edge.

Remote Sense

Voltage accuracy	Add 3 ppm of voltage range per volt of HI lead drop plus 1 μ V per volt of lead drop per ohm of corresponding sense lead resistance to voltage accuracy specifications
Maximum sense lead resistance	100 Ω
Maximum lead drop per lead	3 V, maximum 202 V between HI and LO terminals

Note Exceeding the maximum lead drop per lead value may cause the driver to report a sense lead error.

Related Information

Voltage on page 7

Safety Interlock

The safety interlock feature is designed to prevent users from coming in contact with hazardous voltage generated by the SMU in systems that implement protective barriers with controlled user access points.

Caution Hazardous voltages of up to the maximum voltage of the PXIe-4137 may appear at the output terminals if the safety interlock terminal is closed. Open the safety interlock terminal when the output connections are accessible. With the safety interlock terminal open, the output voltage level/limit is limited to ± 40 V DC, and protection will be triggered if the voltage measured between the device HI and LO terminals exceeds $\pm (42$ V peak ± 0.4 V).

Attention Des tensions dangereuses allant jusqu'à la tension maximale du PXIe-4137 peuvent apparaître aux terminaux de sortie si le terminal de verrouillage de sécurité est fermé. Ouvrez le terminal de verrouillage de sécurité lorsque les connexions de sortie sont accessibles. Lorsque le terminal de verrouillage de sécurité est ouvert, le niveau ou la limite de tension de sortie est limité à \pm 40 V CC, et la

protection se déclenchera si la tension mesurée entre les terminaux HI et LO de l'appareil dépasse \pm (42 Vpic \pm 0,4 V).

Caution Do not apply voltage to the safety interlock connector inputs. The interlock connector is designed to accept passive, normally open contact closure connections only.

Attention N'appliquez pas de tension aux entrées du connecteur de verrouillage de sécurité. Le connecteur de verrouillage est conçu pour accepter uniquement des connexions à fermeture de contact passives, normalement ouvertes.

Safety interlock terminal open	
Output	<±42.4 V peak
Setpoint	<±40 V DC
Safety interlock terminal closed	
Output	Maximum voltage of the device
Setpoint	Maximum selected voltage range

Examples of Calculating Accuracy Specifications³⁴

Example 1: Calculating 5 °C Accuracy

Calculate the accuracy of 900 nA output in the 1 µA range under the following conditions:

Ambient temperature	28 °C
Internal device temperature	within T _{cal} ±5 °C ³⁵
Self-calibration	within the last 24 hours

Solution

Because the device internal temperature is within $T_{cal} \pm 5$ °C and the ambient temperature is within 23 °C ± 5 °C, the appropriate accuracy specification is the following value:

$$0.03\% + 100 \text{ pA}$$

Calculate the accuracy using the following formula:

³⁴ Specifications listed in examples are for demonstration purposes only and do not necessarily reflect specifications for this device.

 T_{cal} is the internal device temperature recorded by the PXIe-4137 at the completion of the last self-calibration.

Accuracy =
$$900 \text{ nA} * 0.03 \% + 100 \text{ pA}$$

= $270 \text{ pA} + 100 \text{ pA}$
= 370 pA

Therefore, the actual output is within 370 pA of 900 nA.

Example 2: Calculating Remote Sense Accuracy

Calculate the remote sense accuracy of 500 mV output in the 600 mV range. Assume the same conditions as in Example 1, with the following differences:

HI path lead drop	3 V
HI sense lead resistance	2 Ω
LO path lead drop	2.5 V
LO sense lead resistance	1.5 Ω

Solution

Because the device internal temperature is within $T_{cal} \pm 5$ °C and the ambient temperature is within 23 °C ± 5 °C, the appropriate accuracy specification is the following value:

$$0.02\% \pm 50~\mu V$$

Because the device is using remote sense, use the following remote sense accuracy specification:

Add 3 ppm of voltage range per volt of HI lead drop plus 1 μ V per volt of lead drop per Ω of corresponding sense lead resistance to voltage accuracy specifications.

Calculate the remote sense accuracy using the following formula:

Accuracy =
$$\left(500 \text{ mV} * 0.02 \% + 50 \mu V\right) + \frac{600 \text{ mV} * 3 \text{ ppm}}{1 \text{ Vof lead drop}} * 3 V + \frac{1 \mu V}{V * \Omega} * 3 V$$

 $V * 2 \Omega + \frac{1 \mu V}{V * \Omega} * 2.5 V * 1.5 \Omega$
= $100 \mu V + 50 \mu V + 1.8 \mu V * 3 + 6 \mu V + 3.75 \mu V$
= $165.15 \mu V$

Therefore, the actual output is within 165.15 μV of 500 mV.

Example 3: Calculating Accuracy with Temperature Coefficient

Calculate the accuracy of 900 nA output in the 1 μ A range. Assume the same conditions as in Example 1, with the following differences:

Ambient temperature	15 °C
---------------------	-------

Solution

Because the device internal temperature is within $T_{cal} \pm 5$ °C, the appropriate accuracy specification is the following value:

$$0.03\% + 100 \text{ pA}$$

Because the ambient temperature falls outside of 23 °C ± 5 °C, use the following temperature coefficient per °C outside the 23 °C ± 5 °C range:

$$0.0006\% + 4 pA$$

Calculate the accuracy using the following formula:

Temperature Variation =
$$(23 \, ^{\circ}C - 5 \, ^{\circ}C) - 15 \, ^{\circ}C = 3 \, ^{\circ}C$$

Accuracy =
$$(900 \text{ nA} * 0.03 \% + 100 \text{ pA}) + \frac{900 \text{ nA} * 0.0006 \% + 4 pA}{1 \text{ °C}} * 3 \text{ °C}$$

= $370 \text{ pA} + 28.2 \text{ pA}$
= 398.2 pA

Therefore, the actual output is within 398.2 pA of 900 nA.

Examples of Determining Extended Range Pulse Parameters and Optimizing Slew Rate using NI SourceAdapt

Note Specifications listed in examples are for demonstration purposes only and do not necessarily reflect specifications for this device.

Amplicon

Example 1: Determining Extended Range Pulse On Time and Duty Cycle Parameters for the PXIe-4137 (40W)

Determine the extended range pulsing parameters, assuming the following operating point.

Output function	Pulse Current
Pulse voltage limit, V _{pulse}	80 V
Pulse current level, I _{pulse}	3 A
Bias voltage limit, V _{bias}	0.1 V
Bias current level, I _{bias}	0 A
Pulse on time, t _{on}	1.5 ms
Chassis' slot cooling capacity	≥58 W

Solution

Begin by calculating the pulse power using the following equation.

Pulse power =
$$V_{pulse} * I_{pulse}$$

= 80 V * 3 A
= 240 W

For PXIe-4137 (40W), refer to the following figures to identify next steps. First, verify the the region of operation using *Figure 1*. on page 4, which shows 240 W is in the extended range pulsing region.

Next, refer to *Figure 7*. on page 14, which shows the maximum pulse on time, t_{on} , is limited by the maximum pulse energy, $E_{pulseMax}$. Use the pulse energy equation (*Equation 3*) from *Table 6*. on page 15 to calculate the maximum pulse on time, t_{onMax} (*Equation 8*).

$$t_{onMax} = \left| \frac{E_{pulseMax}}{V_{pulse} * I_{pulse}} \right| \quad (Eq.8)$$
$$= \left| \frac{0.4 \text{ J}}{80 \text{ V* 3 A}} \right|$$
$$= 1.67 \text{ ms}$$

Next, refer to Figure 8. on page 15, which shows the maximum duty cycle, D, is limited by the cycle average power, P_{CA} . If the required pulse on time is 1.5 ms and the module is installed in a chassis with slot cooling capacity \geq 58 W, use the cycle average power equation (Equation7) from Table 6. on page 15 to calculate the minimum pulse off time, t_{offMin} (Equation 9).

$$\begin{split} t_{OffMin} &= \left| \frac{P_{CA} * t_{on} - V_{pulse} * I_{pulse} * t_{on}}{P_{CA} - V_{bias} * I_{bias}} \right| \quad \left(\textit{Eq.9} \right) \\ &= \left| \frac{20 \text{ W} * 1.5 \text{ ms} - 80 \text{ V} * 3 \text{ A} * 1.5 \text{ ms}}{20 \text{ W} - 0.1 \text{ V} * 0 \text{ A}} \right| \\ &= 16.5 \text{ ms} \end{split}$$

Finally, verify that the pulse cycle time, t_{cycle}, is greater than or equal to the minimum pulse cycle time, t_{cycleMin} (5 ms). To calculate the pulse cycle time, use the following equation:

$$t_{cycle} = t_{on} + t_{off}$$
 (Eq. 6)
= 1.5 ms + 16.5 ms

In this case, the pulse cycle time meets the minimum pulse cycle time specification.

Therefore, a 80 V, 3 A pulse with an on time of 1.5 ms and a pulse off time of 16.5 ms is supported, since it fulfills the following criteria:

- Greater than the minimum pulse on time of 10 us
- Equal to the minimum pulse off time of 16.5 ms to meet maximum cycle average power
- Greater than the minimum pulse cycle time of 5 ms

Example 2: Determining Extended Range Pulse On Time and Duty Cycle Parameters for the PXIe-4137 (20W)

Determine the extended range pulsing parameters, assuming the following operating point.

Output function	Pulse Current
Pulse voltage limit, V _{pulse}	80 V
Pulse current level, I _{pulse}	3 A

Bias voltage limit, V _{bias}	0.1 V
Bias current level, I _{bias}	0 A
Pulse on time, t _{on}	1.5 ms
Chassis' slot cooling capacity	≥58 W

Solution

Begin by calculating the pulse power using the following equation.

Pulse power =
$$V_{pulse}^* I_{pulse}$$

= 80 V* 3 A
= 240 W

Since the pulse power of 240 W is within the 480 W region of *Figure 2*. on page 5, the maximum configurable on time is 400 µs and maximum duty cycle is 2%.

For example, if the required pulse on time is $100~\mu s$, and the required pulse cycle time is 10~m s, calculate the pulse off time and verify the duty cycle using the following equations.

$$t_{off} = t_{cycle} - t_{on}$$

= 10 ms - 100 μ s
= 9.9 ms

Duty cycle =
$$\frac{t_{on}}{t_{cycle}} * 100\%$$

= 1%

Therefore, a pulse with an on time of $100~\mu s$ and 1% duty cycle would be supported, since it fulfills the following criteria:

- Greater than the minimum pulse on time of 50 μs
- Less than the maximum pulse on time of 400 μs and duty cycle of 2%
- Greater than the minimum pulse cycle time of 5 ms

Example 3: Using NI SourceAdapt to Increase the Slew Rate of the Pulse

Determine the appropriate operating parameters and custom transient response settings, assuming the following example parameters.

Output function	Pulse Current
Pulse voltage limit, V _{pulse}	160 V
Pulse current level, I _{pulse}	3 A
Bias voltage limit, V _{bias}	0.1 V
Bias current level, I _{bias}	0 A
Transient response	Fast
Load, cable impedance	22.3 Ω, 1.8 μΗ
Pulse on time, t _{on}	10 μs
Pulse off time, t _{off}	4.99 ms

The SMU **Transient Response** can be configured to three predefined settings, Slow, Normal, and Fast. If these settings do not provide the desired pulse response, a fourth setting, Custom, enables NI SourceAdapt³⁶ technology which provides the ability to customize the SMU response to any load, and achieve an ideal response with minimum rise times and no overshoots or oscillations.

Figure 11. 10 µs Pulse Output with Load, Fast Transient Response

Solution

SourceAdapt allows users to set the desired gain bandwidth, compensation frequency, and pole-zero ratio through custom transient response to obtain the desired pulse waveform. To use SourceAdapt, first set the **Transient Response** to Custom.

To achieve the resulting waveform in the following figure, use the parameters in the following table.

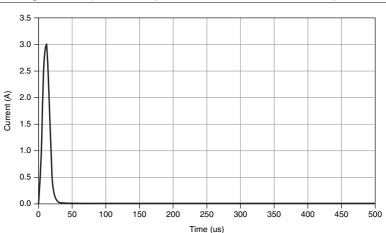


Figure 12. 10 µs Pulse Output with Load, Custom Transient Response

Amplicon.com

IT and Instrumentation for industry

Transient response	Custom
Current: Gain bandwidth	900 kHz
Current: Compensation frequency	200 kHz
Current: Pole-zero ratio	2

Gain bandwidth is directly proportional to the step response slew rate. The higher the gain bandwidth, the higher the slew rate. It is worth noting that increasing the gain bandwidth will likely increase ringing. However, this can likely be removed by appropriately setting the compensation frequency and the pole-zero ratio.

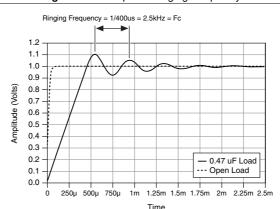


Figure 13. Example of Ringing Frequency

Compensation frequency and pole-zero ratio are used to determine the frequencies of the SMU control loop pole and zero, which can be used to optimize the system transient response by increasing phase margin and reducing ringing. To reduce the overshoot, it is recommended to set the compensation frequency close to the overshoot ringing frequency, see Fc in the figure above, and set the pole-zero ratio to be greater than 1.

For reference, the pole frequency and zero frequency are derived by the following equations.

Pole frequency = Compensation frequency * $\sqrt{\text{Pole-zero ratio}}$

 $Zero\ frequency = \frac{Compensation\ frequency}{Pole-zero\ ratio}$

These settings can be accessed through the **Transient Response** set to Custom: Voltage or Current.

Trigger Characteristics

Types	Start, Source, Sequence Advance, Measure, Pulse
Sources (PXI trigger lines <07>)	37
Polarity	Configurable
Minimum pulse width	100 ns, nominal
Destinations ³⁸ (PXI trigger lines <	07>)
Polarity	Active high (not configurable)
Pulse width	>200 ns, typical
put triggers (events)	
Types	Source Complete, Sequence Iteration Complete, Sequence Engine Done, Measure Complete, Pulse Complete, Ready for Pulse
Destinations (PXI trigger lines <0.	7>)
Polarity	Configurable
Pulse width	Configurable between 250 ns and 1.6 μs, nominal

Protection

Output channel protection	
Overcurrent or overvoltage	Automatic shutdown, output disconnect relay opens
Sink overload protection	Automatic shutdown, output disconnect relay opens

³⁷ Pulse widths and logic levels are compliant with PXI Express Hardware Specification Revision 1.0 ECN 1.

³⁸ Input triggers can be re-exported.

Overtemperature	Automatic shutdown, output disconnect relay opens
Safety interlock	Disable high voltage output, output disconnect relay opens

Safety Voltages

DC voltage	±200 V
Channel-to-earth ground isolation	
Continuous	250 V DC, Measurement Category I
Withstand	1000 V _{rms} , verified by a 5 s withstand

Current Ratings

DC current range	± 1 A; ± 3 A, pulse only
	,, F ,

Guard Output Characteristics

Cable guard		
Output impedance	$3 \text{ k}\Omega$, nominal	
Offset voltage	1 mV, typical	

Calibration Interval

mmended calibration interval	1 year	
------------------------------	--------	--

Power Requirement

PXIe-4137 (40W)	$3.0~\mathrm{A}$ from the $3.3~\mathrm{V}$ rail and $6.0~\mathrm{A}$ from the $12~\mathrm{V}$ rail
PXIe-4137 (20W)	2.5 A from the 3.3 V rail and 2.7 A from the 12 V rail

Physical

Dimensions	3U, one-slot, PXI Express/CompactPCI
	Express module
	$2.0 \text{ cm} \times 13.0 \text{ cm} \times 21.6 \text{ cm}$
	$(0.8 \text{ in.} \times 5.1 \text{ in.} \times 8.5 \text{ in.})$
Weight	
PXIe-4137 (20W)	419 g (14.8 oz)
PXIe-4137 (40W)	428 g (15.1 oz)
Front panel connectors	5.08 mm (8 position) combicon, 1 × 4.08 mm (3 position) combicon

Environmental Characteristics

Temperature		
Operating	0 °C to 55 °C	
Storage	-40 °C to 71 °C	
Humidity		
Operating	10% to 90%, noncondensing	
Storage	5% to 95%, noncondensing	
Pollution Degree	2	
Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)	
Shock and Vibration		
Operating vibration	5 Hz to 500 Hz, 0.3 g RMS	
Non-operating vibration	5 Hz to 500 Hz, 2.4 g RMS	
Operating shock	30 g, half-sine, 11 ms pulse	

Environmental Standards

This product meets the requirements of the following environmental standards for electrical equipment.

- IEC 60068-2-1 Cold
- IEC 60068-2-2 Dry heat
- IEC 60068-2-78 Damp heat (steady state)
- IEC 60068-2-64 Random operating vibration

- IEC 60068-2-6 Sinusoidal operating vibration
- IEC 60068-2-27 Operating shock
- MIL-PRF-28800F
 - Low temperature limits for operation Class 3, for storage Class 3
 - High temperature limits for operation Class 2, for storage Class 3
 - Random vibration for non-operating Class 3
 - Shock for operating Class 2

Note To verify marine approval certification for a product, refer to the product label or visit *ni.com/certification* and search for the certificate.

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the *Product Certifications and Declarations* section.

EMC Standards

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions

Note In Europe, Australia, and New Zealand (per CISPR 11) Class A equipment is intended for use in non-residential locations.

Note Group 1 equipment is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the Product Certifications and Declarations section.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

Datasheet

For additional environmental information, refer to the *Commitment to the Environment* web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit *ni.com/environment/weee*.

电子信息产品污染控制管理办法(中国 RoHS)

● NI 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 NI 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs china.)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit *ni.com/product-certifications*, search by model number, and click the appropriate link.

NI Services

Visit *ni.com/support* to find support resources including documentation, downloads, and troubleshooting and application development self-help such as tutorials and examples.

Visit *ni.com/services* to learn about NI service offerings such as calibration options, repair, and replacement.

Visit *ni.com/register* to register your NI product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

NI corporate headquarters is located at 11500 N Mopac Expwy, Austin, TX, 78759-3504, USA.

Datasheet

Datasheet

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: *Help»Patents* in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-7014, and DFAR 252.227-7015.

© 2015—2021 National Instruments Corporation. All rights reserved.

374882H-01

