

Amplicon

Amplicon.com IT and Instrumentation for industry

Contents

troduction

Amplicon.comIT and Instrumentation for industry

Introduction

The following specifications are typical at 25 °C, unless otherwise noted. For more information about the NI 6238, refer to the **NI 6238/6239 User Manual** available from <u>ni.com/manuals</u>.

Analog Input

Number of channels	8 differential current inputs		
Ground reference	AI GND		
ADC resolution	16 bits		
DNL	No missing codes guaranteed		
INL	Refer to the <u>AI Absolute Accuracy</u> section		
Sample rate			
Maximum 250	250 kS/s		
Minimum No	No minimum		
Timing accuracy	50 ppm of sample rate		
Timing resolution	50 ns		
Input coupling	DC		
Input range	±20 mA		

Amplicon.comIT and Instrumentation for industry

Maximum working voltage for analog inputs	Refer to the Maximum Working Voltage section
Input impedance (AI+ to AI-)	92 $\Omega \pm 10\%$ in parallel with 100 pF
Maximum input impedance	100 Ω (at 55 °C)
Input bias current	±100 pA
Small signal bandwidth (-3 dB)	700 kHz
Input FIFO size	4,095 samples
Scan list memory	4,095 entries
Data transfers	DMA (scatter-gather), interrupts, programmed I/O
Input current during overvoltage condition	±20 mA maximum/Al pin
Overcurrent protection	±40 mA maximum ^[1]
Overvoltage protection (AI x+ or AI x- with	respect to AI GND) ^[2]
	or up to two Al pins
Device off ±15 V fo	or up to two Al pins

Typical Performance Graphs

Figure 1. AI Small Signal Bandwidth

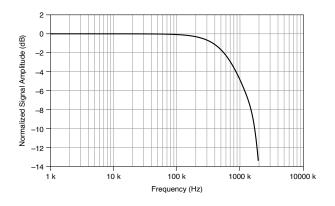
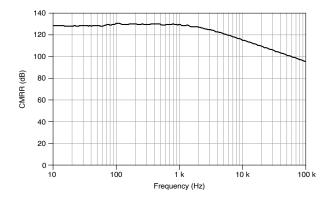



Figure 2. AI CMRR to Earth Ground

AI Absolute Accuracy

Note Accuracies listed are valid for up to one year from the device external calibration.

Table 2. AI Absolute Accuracy

Nominal	Nominal	Residual	Residual	Offset	Random	Absolute	Sensitivity
Range	Range	Gain Error	Offset	Тетрсо	Noise, σ	Accuracy at	(μA)
Positive	Negative	(ppm of	Error (ppm	(ppm of	(µArms)	Full Scale	
Full Scale	Full Scale	Reading)	of Range)	Range/°C)		(μΑ)	
0.02	-0.02	595	100	79	0.6	18.9	0.24

Amplicon.com

IT and Instrumentation for industry

Note Sensitivity is the smallest current change that can be detected. It is a function of noise.

Gain tempco	35 ppm/°C
Reference tempco	5 ppm/°C
INL error	76 ppm of range

AI Absolute Accuracy Equation

AbsoluteAccuracy = Reading · (GainError) + Range · (OffsetError) + NoiseUncertainty

 GainError = ResidualAIGainError + GainTempco · (TempChangeFromLastInternalCal) + ReferenceTempco · (TempChangeFromLastExternalCal)
 OffsetError = ResidualAIOffsetError + OffsetTempco · (TempChangeFromLastInternalCal) + INLError
 NoiseUncertainty = <u>Random Noise 3</u> <u>√100</u>

for a coverage factor of 3 σ and averaging 100 points.

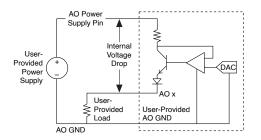
AI Absolute Accuracy Example

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C
- number_of_readings = 100
- CoverageFactor = 3 σ

For example, on the 20 mA range, the absolute accuracy at full scale is as follows:

- GainError = 595 ppm + 35 ppm · 1 + 5 ppm · 10 = 680 ppm
- OffsetError = 100 ppm + 79 ppm · 1 + 76 ppm = 255 ppm
- NoiseUncertainty =
- <u>.6 µA 3</u>
- $\sqrt{100}$
- =.18 μΑ
- AbsoluteAccuracy = 20 mA \cdot (GainError) + 20 mA \cdot (OffsetError) + NoiseUncertainty = 18.9 μ A


Analog Output

Number of channels	2 current outputs	
Ground reference	AO GND	
DAC resolution	16 bits	
Maximum update rate		
1 channel	500 kS/s	
2 channels	450 kS/s per channel	
Timing accuracy	50 ppm of sample rate	
Timing resolution	50 ns	
Output range	0 mA to 20 mA	
Output coupling	DC	
Power-on state	0 mA	

Power-on glitch	None
Output FIFO size	8,191 samples shared among channels used
Data transfers	DMA (scatter-gather), interrupts, programmed I/O
AO waveform modes	Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update
External power supply	10 VDC to 30 VDC, refer to the figure
External power supply consumption	50 mA maximum, refer to the figure
Internal voltage drop	3 V maximum, refer to the figure
Maximum resistive load	Up to 1 $k\Omega$ with 24 V power supply connected; refer to the figure

Figure 3. Analog Output

Protection	Open and short circuit
Slew rate	0.1 mA/μS

AO Absolute Accuracy

Absolute accuracy at full-scale numbers is valid immediately following internal calibration and assumes the device is operating within 10 °C of the last external calibration.

Note Accuracies listed are valid for up to one year from the device external calibration.

Table 2. AO Absolute Accuracy

Nominal Range Positive Full Scale (A)	Nominal Range Negative Full Scale (A)	Residual Gain Error (% of Reading)	Gain Tempo (ppm/°		Residual Offset Error (ppm of Range)	Offset Tempco (ppm of Range/°C)	Absolute Accuracy at Full Scale (μΑ)
0.02	0	0.1570	20		0.0537	8	52.3
Reference tempco			5 ppm/°C				
INL error			128 ppm of range				
Random noise				2 μA			

AO Absolute Accuracy Equation

AbsoluteAccuracy = OutputValue · (GainError) + Range · (OffsetError)

- GainError = ResidualGainError + GainTempco ·
 (TempChangeFromLastInternalCal) + ReferenceTempco ·
- (TempChangeFromLastExternalCal)
- OffsetError = ResidualOffsetError + AOOffsetTempco · (TempChangeFromLastInternalCal) + INLError

Digital I/O/PFI

Static Characteristics

Number of channels	10 total
Number of input channels	6 (PFI <05>/P0.<05>)
Number of output channels	4 (PFI <69>/P1.<03>)
Direction control	Fixed, lines are unidirectional

PFI/Port 0/Port 1 Functionality

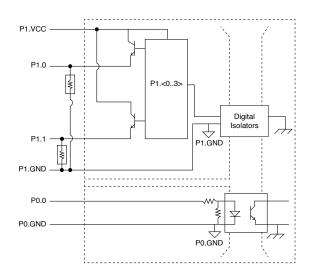
PFI <05>/P0.<05>	Static digital input, timing input
PFI <69>/P1.<03>	Static digital output, timing output
Timing output sources	Many Al, AO, counter timing signals
Debounce filter settings	125 ns, 6.425 μs , 2.56 ms, disable; high and low transitions; selectable per input

Digital Input (Port 0)

Number of channels	6
Ground reference	P0.GND
Input voltage range	0 V to 30 V
Minimum pulse width for timing signal	0.5 μs

Logic "0" level	0 V to 4 V	
Logic "1" level	10 V to 30 V	
Minimum input impedance	3.3 kΩ	
Typical input current	7 mA at 24 V input, 2.5 mA at 8 V input	
Maximum input current	9 mA	
Propagation delay		
Low to high 150	high 150 ns, typical	
High to low 100	100 ns, typical	

Digital Output (Port 1)


Number of channels	4
Ground reference	P1.GND
Device output type	DO source

The following figure shows PO.<0..5> and PI.<0..3> on the NI 6238 device.

Figure 1. NI 6238 Digital I/O Connections

Amplicon.com IT and Instrumentation for industry

Maximum external supply voltage (P1.VCC)	30 V
On state saturation voltage	1.6 V maximum at 350 mA
Off state leakage	50 μΑ
Maximum current	100 mA for each line for simultaneous usage, 350 mA for single line usage
Minimum pulse width for timing signal (source output)	5 μs
Propagation delay (source output)	1
Open to close	0.45 µs
Close to open	2.15 µs

Amplicon.comIT and Instrumentation for industry

General-Purpose Counters/Timers

2
32 bits
Edge counting, pulse, semi-period, period, two-edge separation
X1, X2, X4 quadrature encoding with Channel Z reloading; two- pulse encoding
Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling
80 MHz, 20 MHz, 0.1 MHz
0 MHz to 20 MHz
50 ppm
Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down
Any input PFI, RTSI, PXI_TRIG, PXI_STAR, many internal signals
2 samples
Dedicated scatter-gather DMA controller for each counter/timer; interrupts; programmed I/O

Frequency Generator

Number of channels	1

Base clocks	10 MHz, 100 kHz
Divisors	1 to 16
Base clock accuracy	50 ppm

Output can be available on any output PFI or RTSI terminal.

Phase-Locked Loop (PLL)

Number of PLLs	1
Reference signal	PXI_STAR, PXI_CLK10, RTSI <07>
Output of PLL	80 MHz Timebase; other signals derived from 80 MHz Timebase including 20 MHz and 100 kHz Timebases

External Digital Triggers

Source	Any PFI, RTSI, PXI_TRIG, PXI_STAR
Polarity	Software-selectable for most signals
Analog input function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Convert Clock, Sample Clock Timebase
Analog output function	Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Counter/timer function	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down

Device-to-Device Trigger Bus

PCI	RTSI <07>[3]
PXI	PXI_TRIG <07>, PXI_STAR
Output selections	10 MHz Reference Clock, frequency generator output, many internal signals
Debounce filter settings	125 ns, 6.425 μs , 2.56 ms, disable; high and low transitions; selectable per input

Bus Interface

PCI/PXI	3.3 V or 5 V signal environment

The PXI device can be installed in PXI slots or PXI Express hybrid slots.

DMA channels	4, analog input, analog output, counter/timer 0, counter/timer 1

Power Requirements

Current draw from bus d	uring no-load condition	
+5 V	0.7 A	
+12 V	20 mA	
Current draw from bus d	uring AI and AO overvoltage condition	
+5 V	0.95 A	

+12 V		20 mA
Physical Cha	aracteristics	
Dimensions		
PCI printed circuit board		9.7 cm × 15.5 cm(3.8 in. × 6.1 in.)
PXI printed circuit board		Standard 3U PXI
Weight		
PCI	103 g (3.6 oz)	
PXI	144 g (5.1 oz)	
I/O connector		37-pin D-SUB

Calibration

Recommended warm-up time	15 minutes
Calibration interval	1 year

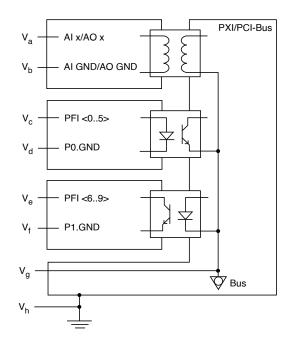
Maximum Working Voltage

Connect only voltages that are below these limits.

Channel-to-earth ground ^[4]		
Continuous	≤30 Vrms/60 VDC Measurement Category I	

Withstand	≤840 Vrms/1,200 VDC, verified by a 5 s dielectric	withstand test	
Channel-to-b	us[5]		
Continuous	≤30 Vrms/60 VDC Measurement Category I		
Withstand	≤1,400 Vrms/1,950 VDC, verified by a 5 s dielectric withstand test		
Analog channo V _a - V _b)	el-to-AI GND or AO GND (in the following figure,	≤11 V, Measurement Category I	
Digital channel-to-P1.GND or P0.GND (in the following figure, $ V_c$ - $V_d $ or $ V_e$ - $V_f)$		≤30 V, Measurement Category I	

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.


Caution This device is rated for Measurement Category I and the voltage across the isolation barrier is limited to no greater than 30 Vrms/60 VDC/ 42.4 V_{pk} continuous. These test and measurement circuits are not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV.

The following figure illustrates the safety voltages specifications.

Figure 5. NI 6238 Safety Voltages

Amplicon.com IT and Instrumentation for industry

Environmental

Operating temperature	0 °C to 55 °C
Storage temperature	-20 °C to 70 °C
Humidity	10% RH to 90% RH, noncondensing
Maximum altitude	2,000 m
Pollution Degree (indoor use only)	2

Indoor use only.

Amplicon.com IT and Instrumentation for industry

Amplicon

Shock and Vibration (PXI Only)

Operational shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)
Random vibration Operating 5 Hz to	500 Hz, 0.3 g _{rms}
	500 Hz, 2.4 g _{rms} (Tested in accordance with IEC 60068-2-64. Nonoperating ofile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the <u>Product</u> <u>Certifications and Declarations</u> section.

Electromagnetic Compatibility

CE Compliance $C \in$

• 2011/65/EU; Restriction of Hazardous Substances (RoHS)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI

products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit <u>ni.com/environment/weee</u>.

电子信息产品污染控制管理办法(中国 RoHS)

• ◎ ◎ ● 中国 RoHS— NI 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于 NI 中国 RoHS 合规性信息,请登录 ni.com/environment/ rohs_china。(For information about China RoHS compliance, go to ni.com/ environment/rohs_china.)

Device Pinout

Figure 6. NI PCI/PXI-6238 Pinout

 1 Any voltage applied resulting in current flowing above 40 mA can damage the device permanently.

² This overvoltage protection triggers after the overcurrent protection is in effect.

 3 In other sections of this document, RTSI refers to RTSI <0..7> for the PCI devices or PXI_TRIG <0..7> for PXI devices.

 $\frac{4}{2}$ In the figure, $|V_a - V_h|$, $|V_c - V_h|$, and $|V_e - V_h|$.

 $\frac{5}{2}$ In the figure, $|V_a - V_g|$, $|V_c - V_g|$, and $|V_e - V_g|$.

